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Abstract: Powdery mildew is one of the most significant rubber tree diseases, with a substantial
impact on the yield of natural rubber. This study aims to establish a detection approach that coupled
continuous wavelet transform (CWT) and machine learning for the accurate assessment of powdery
mildew severity in rubber trees. In this study, hyperspectral reflectance data (350-2500 nm) of
healthy and powdery mildew-infected leaves were measured with a spectroradiometer in a labora-
tory. Subsequently, three types of wavelet features (WFs) were extracted using CWT. They were as
follows: WFs dimensionally reduced by the principal component analysis (PCA) of significant wave-
let energy coefficients (PCA-WFs); WFs extracted from the top 1% of the determination coefficient
between wavelet energy coefficients and the powdery mildew disease class (1%R>WFs); and all
WFs at a single decomposition scale (S5-WFs). To assess the detection capability of the WFs, the
three types of WFs were input into the random forest (RF), support vector machine (SVM), and back
propagation neural network (BPNN), respectively. As a control, 13 optimal traditional spectral fea-
tures (SFs) were extracted and combined with the same classification methods. The results revealed
that the WF-based models all performed well and outperformed those based on SFs. The models
constructed based on PCA-WFs had a higher accuracy and more stable performance than other
models. The model combined PCA-WFs with RF exhibited the optimal performance among all mod-
els, with an overall accuracy (OA) of 92.0% and a kappa coefficient of 0.90. This study demonstrates
the feasibility of combining CWT with machine learning in rubber tree powdery mildew detection.

Keywords: remote sensing; rubber tree powdery mildew; hyperspectral reflectance; continuous
wavelet transform; machine learning; random forest
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1. Introduction

The rubber tree is a cash crop native to Brazil and mainly grows in tropical and sub-
tropical regions. The milky latex extracted from rubber trees serves as the primary source
of natural rubber and is regarded as one of the four major industrial raw materials, along-
side steel, petroleum, and coal [1]. Rubber tree powdery mildew, caused by the infestation
of rubber trees by the pathogen Oidium heveae Steinmann, is one of the most significant
diseases affecting rubber trees. Its occurrence and prevalence are influenced by a combi-
nation of factors, including rubber tree phenology, meteorological conditions, and patho-
gen population [2]. This disease primarily affects the tender leaves, buds, shoots, and in-
florescences of rubber trees, substantially impacting the yield of natural rubber [3]. During
the initial stages of infection, rubber tree leaves exhibit radial silvery mycelium. As the
disease progresses, the mycelium develops into radially shaped, spider-like lesions, even-
tually forming unevenly sized powdery mildew spots. In severe cases, the affected leaves
become covered with powdery mildew, leading to wrinkling, deformation, yellowing,
and the eventual dropping of the leaves [4]. Traditional detection of rubber tree powdery
mildew involves periodic leaf surveys during the peak of the disease, with disease man-
agement guided by weather forecasts. This method has several drawbacks, including the
need for extensive human and material resources, limited representativeness, and an ina-
bility to meet the demand for large-scale, rapid detection in production. In addition, some
detection sites may provide incomplete or untimely data, weakening their role in provid-
ing timely scientific guidance. Therefore, achieving the rapid and accurate detection of
rubber tree powdery mildew is of paramount importance.

Hyperspectral remote sensing technology has found widespread application in the
identification of crop diseases, owing to its advantages of rapid measurements, large cov-
erage, and non-destructive nature [5,6]. Spectroscopic observations of crop disease symp-
toms using field spectroradiometers are typically conducted at the leaf and canopy scales.
The primary focus of research based on such measurements is on characterizing spectral
responses in the visible to near-infrared bands for the assessment of crop diseases, includ-
ing traditional spectral features (SFs) such as vegetation indices and differential spectral
features. Zhang et al. extracted 32 spectral features from indoor spectral data collected
from winter wheat leaves and established two regression models, namely, multiple linear
regression (MLR) and partial least squares regression (PLSR), to evaluate the severity of
winter wheat powdery mildew [7]. Feng et al. collected hyperspectral data from wheat
canopies to identify sensitive bands for wheat powdery mildew (ranging from 570-590
nm and 536-566 nm). Based on this, the authors developed the optimal dual-green vege-
tation index, which was effectively utilized to detect the disease [8]. Huang et al. combined
spectral features of the first-order derivatives, spectral absorption features of continuum
removal, and vegetation indices with a support vector machine (SVM) to construct a
wheat Fusarium head blight identification model at the wheat ear scale [9].

Following on from the application of traditional spectral features, the continuous
wavelet transform (CWT) is an emerging spectral analysis method that enables the mul-
tiscale decomposition of spectral data, allowing it to capture intricate spectral variations.
As a result, it has been applied to detect and identify crop diseases [10,11]. Zhang et al.
combined CWT with PLSR based on hyperspectral data from diseased leaves, enabling
the assessment of winter wheat powdery mildew at the leaf level [12]. Luo et al. achieved
the estimation of wheat aphid density by performing continuous wavelet analysis on the
reflectance spectra of winter wheat leaf samples [13]. Shi et al. proposed a method based
on wavelet features (WFs) to reveal the processes related to wheat stripe rust [14]. Ma et
al. established a wheat Fusarium head blight identification model based on WFs [15]. The
aforementioned studies employed a single thresholding method to determine WFs [16],
demonstrating the superiority of CWT in crop disease detection. However, research on
detecting rubber tree powdery mildew based on CWT is lacking, particularly using mul-
tiple types of WFs for detection. Therefore, the performance of CWT in rubber tree pow-
dery mildew detection needs to be further explored.
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Accurate classification algorithms are crucial in the establishment of precise crop dis-
ease detection models. In recent years, machine learning models have been extensively
applied in the detection and identification of crop diseases due to their excellent classifi-
cation performance [17-19]. Su et al. developed a wheat yellow rust detection system us-
ing the random forest (RF) method, enabling the identification of yellow rust at the farm
scale [20]. Wang et al. proposed an SVM-based detection model for wheat disease severity,
enabling the identification and severity evaluation of wheat stripe rust and leaf rust at the
leaf level [21]. Bohnenkamp et al. also employed an SVM model to analyze images cap-
tured using a hyperspectral camera mounted on an unmanned aerial vehicle (UAV) oper-
ating 20 m above the ground, achieving the regional-level detection of wheat stripe rust
[22]. Lan et al. employed remote sensing images to extract disease features, including tex-
ture, shape, and color, and utilized multiple machine learning algorithms, such as SVM
and AdaBoost, allowing for the identification and classification of Citrus Huanglongbing
[23]. The aforementioned studies have made substantial progress and provide a basis for
further research. However, at present, research on the remote sensing detection of rubber
tree powdery mildew is limited, highlighting the pressing need to develop new methods
aimed at improving the accuracy of detecting rubber tree powdery mildew.

In order to fill the research gap, particularly addressing the limited research on re-
mote sensing detection of rubber tree powdery mildew and the absence of studies utiliz-
ing CWT for feature extraction, this paper uses the hyperspectral reflectance data of rub-
ber tree leaves as the data source and proposes a rubber tree powdery mildew detection
model that combines CWT and machine learning to determine the features and methods
that can effectively detect rubber tree powdery mildew. This study represents the first
attempt in the research community to integrate remote sensing technology with CWT for
rubber tree powdery mildew detection, and it is also one of the few studies utilizing mul-
tiple types of WF features for crop disease detection. The specific objectives of the study
were to (1) evaluate the performance of WFs in detecting rubber tree powdery mildew
and (2) construct a rubber tree powdery mildew detection model coupled with CWT and
machine learning. This study holds significant reference value for the detection and con-
trol of rubber tree powdery mildew.

2. Materials and Methods
2.1. Study Area

The study area is located in the Dai Autonomous Prefecture of Xishuangbanna, Yun-
nan Province, China (22°2'N, 100°52'E), at an elevation of 852.2 m. Xishuangbanna features
a warm and humid climate throughout the year, with annual average temperatures rang-
ing from 18.9 to 23.5 °C and annual rainfall between 1214.8 and 1615.9 mm [24]. Rubber
tree powdery mildew is a typical climate-dependent disease, with low temperatures and
rainy conditions favoring its occurrence and spread. The experiment was conducted from
28 February to 2 March 2023 in both field and indoor settings. During this period, there
was an above-average amount of precipitation, and the average temperatures were rela-
tively low. The rubber tree phenology was predominantly in the bronze to pale-green
stage, a critical period for detecting and controlling rubber tree powdery mildew.

2.2. Data Acquisition

The FieldSpec Pro FR spectrometer (ASD, Boulder, CO, USA) was employed to collect
hyperspectral reflectance data of rubber tree leaves, with a spectral range of 350-2500 nm
and spectral resolutions of 3 nm and 10 nm in the regions of 350-1000 nm and 10002500
nm, respectively [25,26]. During measurements, the leaves were positioned horizontally on
the operating table, and each sample was measured five times to derive the average leaf
spectral reflectance. Prior to measurements, spectral calibration was carried out using a
standard white reference board, with recalibrations conducted at intervals of 10-20 min. A
total of 1250 reflectance spectra were obtained, with the spectral curve resampled to 1 nm.
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During the collection of the leaf hyperspectral reflectance data, disease severity levels
were assessed according to the technical regulations for rubber tree powdery mildew pre-
diction implemented in China in 2015 (NY/T1089-2015). Disease severity was classified
into the following five levels based on the visual appearance of the rubber tree leaves and
the size of lesions (Figure 1): (1) healthy (H) leaves without disease lesions; (2) disease
Severity 1 (S1) describes leaves covered with a layer of a white powdery substance, with
disease lesions occupying one-eighth of the total leaf area; (3) under disease Severity 2
(S2), disease lesions occupy one-quarter of the total leaf area, or leaves are mildly wrinkled
due to the disease; (4) for disease Severity 3 (S3), disease lesions occupy half of the total
leaf area, or leaves are moderately wrinkled due to the disease; and (5) for disease Severity
4 (54) leaves, disease lesions occupy three-fourths of the total leaf area, or leaves are se-
verely wrinkled due to the disease. Table 1 reports the specific grading standards. The
final selection included 250 leaf samples, including 50 H, 50 S1, 50 S2, 50 S3, and 50 54
samples.

Figure 1. Examples of powdery mildew at various disease severity levels. (a) Healthy; (b) Severity
1; (c) Severity 2; (d) Severity 3; (e) Severity 4.

Table 1. Powdery mildew disease severity grading standards.

Level

Healthy Severity 1 Severity 2 Severity 3 Severity 4

Leaf spot area

0 0~12.5% 12.5~25% 25~50% 50~75%

Canopy
appearance
characteristics

Leaves are covered Disease lesions oc- Disease lesions oc- Disease lesions oc-
with a layer of cupy one-quarter cupy half of the to- cupy three-fourths

white powdery of the total leaf tal leaf area, or of the total leaf
No disease lesion  substance, with  area, or leaves are leaves are moder- area, or leaves are
infestation. disease lesions oc- mildly wrinkled ately wrinkled due severely wrinkled
cupying one-eighth due to the disease.  to the disease. ~ due to the disease.
of the total leaf
area.

2.3. Feature Extraction and Analysis
2.3.1. Traditional Spectral Features

Vegetation indices significantly amplify spectral differences through the combination
and transformation of wavebands, yielding favorable outcomes in the remote sensing de-
tection of crop diseases. Hyperspectral reflectance data can eliminate background effects
and stray light reflection signals and increase implicit information through spectral dif-
ferential transform. Thus, it is widely used in crop disease remote sensing detection re-
search. In this study, based on previous research, we selected 23 spectral features from the
two mentioned types, comprising 11 vegetation indices and 12 differential spectral fea-
tures. These features were evaluated for their sensitivity to rubber tree powdery mildew
using correlation analysis. Table 2 summarizes the definitions, descriptions, and refer-
ences of these 23 features.
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Table 2. Traditional spectral features selected in the study.

Category Index/Spectral Definition Description or Formula Reference
Feature
- li
NBNDVI Narrow-band normalized (Rsso — Reso)/(Reso + Reso) [27]
Difference vegetation index
Photochemical/physiological
PRI otochemical/physiologica (Rss1 — Rs70)/(Rss1 + Rsvo) [28]
reflectance index
PHRI Physiological reflectance index (Rss0 — Rs31)/(Rs31 + Rsso) [28]
CARI Chlorophyll absorption ratio (l(a x 670 + Rez + b) | /(a2 + 1)12) x (Rro0/Re0) [29]
index a = (Rroo — Rs50)/150, b = Rss0— (a x 550)
Transfc.)rmed chlorophyll 3 % [(Rooo— Rert) — 0.2  (Ron —
. TCARI absorption and reflectance [30]
Vegetation . Rs00)]/(R700/Re70)
indices index
ified chl hyll
MCARI Modi e,d ¢ 0'1‘0!:) y [(R7o1 = Re71) — 0.2 x (R7o1 — Rs49)]/(R700/Re70) [31]
absorption ratio index
Red- .
RVSI ed-edge vegetation stress [(Rnz2 + Rrs)/2] - R 32]
Index
PSRI Plant senescence reflectance (Reso — Raon)/Roso 33]
Index
ARI Anthocyanin reflectance index (Rss0)1 = (R7o0) ! [34]
NRI Nitrogen reflectance index (Rs70 = Re70)/(Rs70 + Re70) [35]
TVI Triangular vegetation index 0.5 x [120(R750 — Rss0) — 200(Re70 — Rs50)] [36]
. . . Blue edge covers 490-530 nm. Dv is the
First-order maximal derivative . . )
Do inside blue edee maximum value of the first-order deriva-  [37]
& tives within the blue edge of 41 bands
Summation of first-order Defined by the sum of the first-order
SDp u . a 0, O, s rorde derivative values of 41 bands within the [37]
derivatives inside blue edge
blue edge
Ab Wavelength at Db Av is the wavelength at Db [37]
. . ... Yellow edge covers 550-582 nm. Dy is the
First-order maximal derivative . . .
Dy inside vellow edee maximum value of the first-order deriva-  [37]
Y & tives within the yellow edge of 33 bands
Summation of first-order Defined by the sum of the first-order
. . SDy L. .. derivative values of 33 bands within the [37]
Differential derivatives inside yellow edge
spectral yellow edge
P Ay Wavelength at Dy Ay is the wavelength at Dy [37]
features i
First-order maximal derivative Red edge covers 670-737 nm. Dr is the
Dr maximum value of the first-order deriva-  [37]

inside red edge tives within the red edge of 68 bands

Summation of first-order Defined by the sum of the first-order

SDr . derivative values of 68 bands within the [37]
derivatives inside red edge

red edge
Ar Wavelength at Dr Ar is the wavelength at D [37]
SD:/SDb Ratio of SDr and SD» SD:/SD»b [37]
Normalized value of
(SDx = SDv)/(SDx + SDv) SD. and SDs (SDx — SDb)/(SDx + SDv) [37]
Normalized value of
(SDr: - SDy)/(SD:x + SDy) the SD: and SDy (SDr - SDy)/(SD:x + SDy) [37]

Note: Rx is the reflectance at wavelength x nm.
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2.3.2. Continuous Wavelet Transform and Features Extraction

Continuous wavelet transform [38] is an important signal processing method that can
localize both the frequency and time domains and refine functions or signals at different
scales and positions. Based on CWT, the correlation analysis of the original spectral curves
and Gaussian functions at different positions and scales generates a series of continuous
wavelet energy coefficients. These energy coefficients are capable of extracting weak in-
formation from the spectra of various diseases. The output of CWT is as follows [39]:

W;(a,b) = f FODPan@)dA (1)

where f(4) is the reflectance spectrum, A =1, 2, ..., m, with m denoting the number of
bands—here we set m as 2151; Wy (a,b) represents the wavelet coefficients that constitute
a scalogram; and ¥, (1) represents the mother wavelet basis function, with its generic
form as follows:

1 A-b
Yar®) =y (=) @)
where a is the scaling factor indicating the width of the wavelet, and b is the shifting
factor representing the position of the wavelet.

In this study, the Mexican hat wavelet (mexh), which exhibits similar vegetation ab-
sorption characteristics, was selected as the mother wavelet base function [40]. To facilitate
computation without compromising the accuracy of CWT, only the wavelet powers at dy-
adic scales (i.e., 2"n,n=1, 2, ..., 10) [41] were retained and referred to as the 1st scale, 2nd
scale, ..., up to the 10th scale.

Three types of WFs were extracted based on the CWT: wavelet features dimension-
ally reduced by principal component analysis (PCA) of significant wavelet energy coeffi-
cients (PCA-WFs); wavelet features extracted using the top 1% of the coefficient of deter-
mination values between wavelet energy coefficients and the powdery mildew disease
class (1%R2-WFs); and all wavelet features at a single decomposition scale (SS-WFs). Fig-
ure 2 presents the workflow used in this study. All CWT-related analyses were conducted
using MATLAB 2016a (MathWorks).

Input Input
1%R2%-WFs
Reflectance Disease severity
spectral data
T TTTTTTTTTTTT T | Feature
Continuous ! Statistical Analysis Preparation ! regions
wavelet transfor 1 1 A
! ! Thresholding
1 1
: Calculating the : Correlation
1 > correlation 4 > scalogram
: coefficients : \/_\
Wavelet power v L '
scalograms 1 : p—
' I
1 Calculating the| | 1= 0.05 1ent ieant
1 P-val T >correlation features
. value .
1 1
. 1 PCA
1 1
e o e e e e et e, e, ,r e, e e 1
SS-WFs PCA-WFs

Figure 2. Flowchart of wavelet feature extraction.
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(1) PCA-WFs

The principal component analysis is a data dimensionality reduction algorithm that
maps the original set of n-dimensional features onto k-dimensions through a linear trans-
formation. This process generates a new set of k-dimensional orthogonal features, often
referred to as principal components, which are subsequently ranked in descending order
of variance [42]. PCA can be categorized into two main classes: (1) dimensionality reduc-
tion by specifying the dimension of the lower-dimensional space and (2) dimensionality
reduction by specifying a contribution rate. It is widely applied in the fields of data com-
pression, feature extraction, and pattern recognition.

We determined the correlations between the calculated wavelet energy coefficients
and disease severity levels, resulting in multiple significant results at different wavebands
and scales. PCA was then employed to reduce the dimensionality of the significant results
based on specified contribution rates. The features obtained through the process are re-
ferred to as PCA-WFs.

(2) 1%R>-WFs

The calculated wavelet energy coefficients were subjected to correlation analysis with
the severity levels of rubber tree powdery mildew, generating coefficients of determina-
tion (R?). The R2 values of wavelet energy coefficients at different scales and wavebands
form a correlation scalogram, characterizing the sensitivity of each wavelet energy coeffi-
cient to rubber tree powdery mildew. We sorted the R? values in descending order across
all scales, and the top 1% of R? values were retained as wavelet feature regions. To mini-
mize redundancy, within each wavelet feature region, only the wavelet energy coefficients
with the highest R? were preserved as extracted 19%R>WTFs.

(3) SS-WFs

Due to the decomposition of spectral information at various positions and multiple
scales by CWT, we selected the wavelet energy coefficients at a single decomposition scale
as wavelet features in order to effectively capture the spectral changes caused by rubber
tree powdery mildew.

2.4. Model Construction

The extracted PCA-WFs, 1%R?-WFs, and SS-WFs are employed as feature variables,
combined with three classification methods, namely, RF, SVM, and back propagation neu-
ral network (BPNN), to establish rubber tree powdery mildew detection models. The
models were used to select suitable feature variables and classification methods for de-
tecting rubber tree powdery mildew. To demonstrate the superiority of WFs in rubber tree
powdery mildew detection, the study also combined the extracted SFs with the same clas-
sification methods to build detection models for comparisons.

RF is a classification model based on ensemble learning [43], composed of a set of
independent, unpruned decision trees. Multiple sample sets are generated through ran-
dom sampling with replacement, and classification trees are constructed using a fully split
method. The final classification result is obtained by averaging the classification results
from all individual binary decision trees. RF exhibits the advantages of relatively simple
parameter tuning compared to other classification models, that is, the ability to avoid
overfitting and improved robustness. SVM is a supervised learning algorithm [44] that
employs kernel functions to map data into high-dimensional feature spaces and subse-
quently performs a straightforward linear regression [45]. The resulting linear regression
function in the high-dimensional feature space corresponds to a non-linear regression in
the original input space, enabling the modeling and classification of complex data rela-
tionships [46]. SVM exhibits excellent performance in high-dimensional spaces and with
small-sample data, effectively preventing overfitting, and can produce robust models even
when dealing with limited training data. BPNN is a widely used neural network com-
posed of three layers: the input layer, the hidden layer, and the output layer. Information
is propagated forward through connections between these layers, and error backpropaga-
tion and weight updates are performed using the backpropagation algorithm to minimize
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the error between predicted and actual outputs [47]. BPNN exhibits high self-learning po-
tential and broad applicability, making it suitable for handling tasks involving non-linear
and complex data pattern recognition.

2.5. Accuracy Assessment

To better assess the accuracy and stability of the proposed detection, the sample data
was divided into training and validation sets at a ratio of 7:3. A confusion matrix was
constructed using true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). The overall accuracy (OA) and kappa coefficient were computed as eval-
uation parameters to assess the model performance. While OA serves as a comprehensive
measure, evaluating the quality of classification results, the kappa coefficient functions as
a metric, gauging the consistency between the model’s prediction results and the actual
classification outcomes [48,49]. The model development and data analysis were conducted
using the Python machine learning library scikit-learn version 0.24.2 on a Windows 10
operating system [50].

3. Results
3.1. Spectral Responses of Rubber Tree Powdery Mildew
3.1.1. Spectral Responses in Leaves under Powdery Mildew Infection

Figure 3 presents the spectral reflectance curves of rubber tree leaf samples at differ-
ent disease severity levels. The spectral reflectance curves of healthy and diseased leaves
exhibit a similar general trend. However, noticeable differences are observed in the mag-
nitude of spectral reflectance between samples of different disease severity levels. At the
early stages of infection, during the transition from H to S1, the leaf spectral reflectance
presents a sudden downward shift. As the disease severity level advances, the leaf spectral
curves exhibit an overall upward trend. This increase is more pronounced in the visible
and near-infrared wavelength ranges and becomes more prominent in the near-infrared
range. The progress in disease severity clearly affects the reflectance peak at 550 nm, the
absorption valley at 670 nm, and the peaks and valleys of the water absorption bands at
1450 nm and 1950 nm. These results indicate that powdery mildew infestation leads to
remarkable changes in leaf color, pigments, and moisture content. Furthermore, there is a
relatively small differentiation in the spectral curves between 52 and S3. However, a no-
table distinction in spectral reflectance is observed between S3 and 54, indicating promi-
nent changes in the leaf characteristics during the late stages of disease infestation.

0.45
H
0.40 | S1
S2
035 | s
0.30 | =
[}
2
S 025
5t
= 020 |
= 0.
&
015 F
0.05 F
0'00 1 L 1 " 1 L 1 " 1 1 1
400 800 1200 1600 2000 2400

Wavelength (nm)

Figure 3. Spectral reflectance curves of healthy and powdery mildew-infected rubber tree leaves.
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3.1.2. Wavelet Coefficient Responses under Powdery Mildew Infection

CWT decomposes the spectral information at multiple scales for each position, facil-
itating the effective detection of spectral changes induced by rubber tree powdery mildew.
Figure 4 depicts the wavelet coefficients at different scales. The results reveal remarkable
variations in WFs with different disease severity levels across different wavelet scales. As
the wavelet scale increases, the spectral variations from wavelet decomposition become
coarser. At lower scales, such as the 1st to 4th scales, the spectral changes from wavelet
decomposition appear finer across multiple spectral regions. This is particularly true in
the visible light range, where pigment-dominated spectral features are prominent, as well
as the dominant moisture regions near 1400 nm and 1950 nm in the near-infrared range.
At higher scales, such as the 10th scale, although there is a notable difference in wavelet
coefficient values among different disease severity levels, the spectral decomposition abil-
ity is reduced, resulting in an overall change that is coarser.

i Si 52 S5 Sd
0.05 L5
5 CWT-1 i CWT-6
0.03 | 05 -
—
0.02 0.0 /\/\
0.01 05 /
0.00 .M(\ A~ 10 / \V4 /]
Y4
001 i 15 N
-0.02 2.
400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
0.06 CWT-2 | 20 CWT-7
0.04 | L5 /\
10
5 .
0| || es
0.00 Pl " T S ey =i )
A 0.0
-0.02 0.5
0.04 =10 \/
15

400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400

CWT-8

400 800 1200 1600 2000 2400 - 400 800 1200 1600 2000 2400
04 - 8
CWT-4 " CWT-9
02 2 2
A 4 /\
0.0 —r A
2
-0.2
0 T
T——
04 ¥ 2 o
-0.6 -4
400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
1.0 . o =
CWT-5 i o — CWT-10
05 /\ BT e ~.
6 5 S
7 N
0.5 v 2 \
| 0
10 Y
2
400 800 1200 1600 2000 2400 400 800 1200 1600 2000 2400
Wavelength/nm Wavelength/nm

Figure 4. Wavelet coefficient curves at different scales.

3.2. Optimal Feature Extraction Results for Rubber Tree Powdery Mildew
3.2.1. Traditional Spectral Features

Table 3 reports the calculated correlation coefficients between the SFs and disease
severity levels. With the exception of the maximum first-order differential value Dy within
the yellow edge, all SFs exhibited highly significant correlations with the severity of pow-
dery mildew (p-value < 0.001). Among them, the absolute values of the correlation coeffi-
cients for MCARI and TCARI exceeded 0.4, indicating strong correlations. Moreover, the
majority of SFs exhibited relatively high correlations with powdery mildew, with IR| >
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0.3. Based on the correlation results, 13 SFs with absolute correlation coefficients exceed-

ing 0.2 (i.e., demonstrating highly significant correlations) were selected to construct the
model.

Table 3. Correlation between traditional spectral features and disease severity.

Spectral Parameter

Feature Coefficient of Feature Coefficient of
Correlation (R) Correlation (R)
MCARI 0.420908 ** PhRI 0.050046 **
TCARI 0.411013 ** Ar 0.030369 **
D 0.344213 ** Dy -0.006288
SD» 0.342047 ** Ay -0.076195 **
(5D ggg/ (5D 0.326514 ** NBNDVI -0.126625 **
TVI 0.311946 ** PSRI -0.163091 **
SD: 0.295594 ** RVSI -0.238656 **
D 0.284244 ** SD:/SDs -0.26991 **
PRI 0.194551 ** ARI -0.279479 **
CARI 0.175568 ** (SD:— SDv)/(SD: +SDb)  —0.326462 **
NRI 0.09784 ** SDy -0.340163 **
Av 0.078608 **

Note: ** indicates a highly significant correlation with a p-value < 0.001.

3.2.2. Wavelet features

(1) PCA-WFs

p-values were computed to assess the correlation between the wavelet energy coeffi-
cients at different scales and disease severity levels, allowing us to determine the presence
of significant relationships between the two variables. Features with p-values < 0.05 (i.e.,
those with significant correlations) were retained, resulting in a total of 919 features. Di-
mensionality reduction using PCA was applied to the 919 significant features, with a spec-
ified cumulative contribution rate of 95%. This resulted in the selection of 25 features, as
illustrated in Figure 5.
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Figure 5. PCA feature contribution rate distribution.
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(2) 1%R2-WFs

Figure 6 presents the correlation scalogram for disease severity levels and rubber tree
leaf spectral reflectance generated using CWT. The R? values ranged from 0 to 0.425, and
the threshold of R? values in the top 1%, sorted in descending order, was 0.233. The ex-
tracted wavelet feature regions are highlighted in red in Figure 6. The results indicate that
the extracted WFs are primarily located at relatively lower scales, with the majority at the
1st scale and the highest at the 4th scale. These features are concentrated in the near-infra-
red regions of 750-1350 nm, 1550-1800 nm, and 2200-2400 nm, which correspond to the
sensitive regions of the original spectrum. To reduce redundancy, within each wavelet
feature region, the wavelet energy coefficients with the highest R? are retained as the 1%R?2-
WFs, resulting in a total of 59 features. Furthermore, all of the selected 59 features exhibit
highly significant correlations with disease severity levels (p-value <0.001) [51], indicating
that the 1%R?-WFs are sensitive to rubber tree powdery mildew.

0.4
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- {025
02
0.15
0.1
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Scale
o 0 [=)} W How [\S] —_
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Figure 6. Correlation scalogram generated via continuous wavelet transform.

(3) SS-WFs

Using the RF algorithm, detection models for rubber tree powdery mildew were in-
dividually constructed at 10 different decomposition scales, each based on all WFs at a
single decomposition scale (Figure 7). The results indicate that the 1st scale of WFs exhib-
ited superior accuracy, with an OA of 94.7%. As the wavelet scale increased, spectral var-
iations from wavelet decomposition became coarser, and the ability to detect disease
symptoms gradually weakened, resulting in a decline in accuracy. These findings demon-
strate the applicability of the 1st scale of the WFs as the SS-WFs for the subsequent model
construction.
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Figure 7. Detecting the accuracy of the RF model based on all wavelet features at a single decompo-
sition scale.
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3.3. Evaluation of Rubber Tree Powdery Mildew Detection Models
3.3.1. Comparison of Disease Detection Models Based on Different Wavelet Features

Table 4 summarizes the confusion matrices, OA, and kappa coefficients of the rubber
tree powdery mildew detection models constructed by combining the three types of WFs
with the three machine learning classification methods. For the same WF type, the models
based on RF achieved the highest OA and kappa coefficients for all three WFs (PCA-WFs,
1%R2-WFs, and SS-WFs), with overall accuracies of 92.0%, 88.0%, and 94.7%, and kappa
coefficients of 0.90, 0.85, and 0.93, respectively. The BPNN models exhibited the second-
best performance, while the SVM models achieved the lowest accuracy. Therefore, the
choice of an appropriate classification method significantly impacts the accuracy of crop
disease detection models. Using S5-WFs as the input achieved the highest accuracy of
94.7% and a kappa coefficient of 0.93 for the RF model. However, its performance in the
SVM model was notably lower, with an accuracy of only 53.3%, and in the BPNN model,
it reached just 70.7%. Substantial variations were observed among different classification
methods. In contrast, PCA-WFs consistently exhibited relatively high accuracy and excep-
tional stability in all three machine learning models, with overall accuracies of 92.0%,
86.7%, and 84.0%, and kappa coefficients of 0.90, 0.83, and 0.80, respectively. Therefore,
this study suggests that PCA-WFs are more suitable as representative wavelet features for
the detection of rubber tree powdery mildew.

Table 4. Comparison of detection model results based on different wavelet features and algorithms.

PCA-WFs 1%R2-WFs SS-WFs
Algorithm
H S152S53 54 OA(%) Kappa H S1 5253 S4 OA(%) Kappa H S1S2S3 54 OA(%) Kappa
H 180000 170 0 1 0 180 0 0 O
S1 0132 0 0 2130 00 0150 0 O
RF 2 0 1130 0 920 09 2 2100 0 880 0.85 00130 0 947 0.93
S3 01 0111 0 00130 000121
S4 0 0 0114 000 213 000113
H 180000 1301 20 110100
S1 0132 0 0 3102 0 0 45510
SVM S2 1 2110 0 867 08 1 1110 0 587 0.48 127 22 533 0.42
S3 01 0111 010112 3366 2
S4 01 0 212 200114 001211
H110 00 48 300 101 1 00
S1 0123 0 0 0123 0 0 1104 0 0
BPNN S2 0 2120 0 840 080 4 2500 707 0.64 021100 707 0.64
S3 012143 01488 21188
S4 0 0 0 014 100014 000014

3.3.2. Comparison of Disease Detection Models Based on Optimal Wavelet Features and
Traditional Spectral Features

After determining PCA-WFs as the optimal wavelet features, we compared the de-
tection performance of PCA-WFs and SFs for rubber tree powdery mildew (Table 5).
When employing the selected 13 SFs (MCARI, TCARI, Dy, SD», (SD: - SDy)/(SD: + SDy),
TVI, SDx, Dr, RVSI, SD:/SDv, ARI, (SDr = SDb)/(SDr + SDb), SDy, (SDr = SDb)/(SDr + SDb), SDy)
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as input, the detection models constructed using the RF, SVM, and BPNN algorithms ex-
hibited overall accuracies of 45.3%, 41.3%, and 44.0%, with kappa coefficients of 0.32, 0.26,
and 0.30, showing subpar performance for powdery mildew detection. In contrast, the
disease recognition models based on PCA-WFs exhibited a prominently higher accuracy
compared to the models based on SFs, with overall accuracies increasing by 46.7%, 45.4%,
and 40.0%, and kappa coefficients increasing by 0.58, 0.57, and 0.50, respectively.

These results indicate the ability of WF-based models to outperform those built with
SFs. WFs perform well in distinguishing healthy and powdery mildew-infected rubber
tree leaves, demonstrating the feasibility of combining CWT with machine learning for
rubber tree powdery mildew detection. The model combining PCA-WFs and RF exhibits
the best performance among all models, with an OA of 92.0% and a kappa coefficient of
0.90. This may be attributed to the multiscale decomposition of spectral information via
CWT at various positions, revealing spectral variations related to pigments, moisture,
morphology, and structure induced by rubber tree powdery mildew. In addition, the in-
tegration of PCA in dimensionality reduction optimally selects positions and scales.

Table 5. Comparison of the detection model accuracy between optimal wavelet features and tradi-
tional spectral features.

PCA-WFs SFs
Algorithm
H S1 S2 S3 S4 OA(%) Kappa H S1 S2 S3 S4 OA(%) Kappa
H 18 0 0 0 0 § 2 1 1 0
S1 0 13 2 0 O § 5 1 1 0
RF S$2 0 1 13 0 0 920 09 5 2 3 1 3 453 032
S3 0 1 0 11 1 3 3 5 7 2
S4 0 0 0 1 14 0O 0 1 2 1
H 18 0 0 0 0 3 4 1 6 2
S1 0 13 2 0 O 3 8 0 4 0
SVM s2 1 2 11 0 0 8.7 08 5 5 0 1 2 413 026
s3 0 1 0 11 1 2 3 1 5 3
S4 0 1 0 2 12 1 0 0 1 15
H 1 1 0 0 0 4 1 6 4 1
S1 0 12 3 0 2 6 3 4 0
BPNN S22 0 2 12 0 0 840 08 4 2 3 4 0 440 030
S3 0 1 2 14 3 1 3 1 7 2
S4 0 0 0O 0 14 1 0 2 1 13

4. Discussion

The natural rubber produced from latex extracted via rubber trees is a vital industrial
resource. The global annual economic losses due to rubber tree powdery mildew reach
billions of dollars [52]. The implementation of early warning capabilities prior to the oc-
currence of powdery mildew epidemics or the precise identification in the early stages of
infection could reduce pesticide usage, prevent unnecessary environmental pollution, and
minimize economic losses, thus effectively controlling the outbreak of powdery mildew.

This study introduces a rubber tree powdery mildew detection model that combines
PCA-WFs with RF, representing the first attempt in the research community to integrate
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remote sensing technology with CWT for rubber tree powdery mildew detection. It is also
one of the few studies utilizing multiple types of WF features for crop disease detection.
The optimal rubber tree powdery mildew detection model achieved an OA of 92.0% and
a kappa coefficient of 0.90, demonstrating the substantial potential of using CWT technol-
ogy for detecting rubber tree powdery mildew.

Despite the great progress made by this study, it has several limitations. We em-
ployed three different machine learning classifiers to categorize rubber tree powdery mil-
dew severity levels. Notably, these classifiers exhibited substantial discrepancies. For each
type of feature, models based on RF consistently achieved the highest OA and kappa co-
efficients compared to BPNN and SVM. This may be attributed to the overall stability of
the RF model. As an ensemble method based on multiple decision trees, the risk of over-
fitting in individual trees is minimized. This results in a more robust overall model that
consistently performs well across different datasets. In addition, despite performing less
effectively on BPNN and SVM, the study found that using SS-WFs as the input achieved
the highest accuracy of 94.7% and a kappa coefficient of 0.93 for the RF model. The possi-
ble reason for SS-WFs outperforming PCA-WFs for the RF model might be that SS-WFs
retain all wavelet features at the first scale, encompassing data from various spectral po-
sitions, thus providing a greater amount of information. Additionally, compared to BPNN
and SVM, the RF model excels in handling high-dimensional data [53]. The abundance of
features in SS-WFs facilitates more effective feature selection by the RF model, enabling it
to make more accurate and robust decisions. In particular, machine learning classifiers are
associated with a limited generalization capability. As a result, the performance of disease
identification on the same leaf may exhibit variability in different environmental settings,
such as varying lighting conditions [54]. Consequently, selecting appropriate classification
models is crucial when dealing with distinct diseases.

Furthermore, the study area encompasses various rubber tree varieties. Leaves from
different varieties generally exhibit variations in color and shape. However, this study did
not consider the potential impact of different varieties on the identification of rubber tree
powdery mildew. Thus, the influence of distinct rubber tree varieties on the performance of
disease detection models is worthy of further research. The lack of practical application ex-
periments also constitutes a current limitation, necessitating additional research and exper-
imentation to bridge the gap between theoretical advancements and real-world application.
Moving forward, research endeavors aim to collaborate with agricultural practitioners to
implement this detection method in actual real-world conditions. The integration of feed-
back from practical applications will contribute to refining and optimizing the research.

While our study results can be applied to indicate foliar lesions related to powdery
mildew, the current research did not explore the canopy structure characteristics of rubber
trees. In recent years, the rapid advancement of UAV technology has achieved certain suc-
cesses in pest and disease detection applications [55-57]. Compared to proximal spectral
measurement devices, instruments onboard UAVs can rapidly and non-invasively collect
spectral information from entire crop fields, enabling the more in-depth exploration of the
canopy structure, texture, and other information related to rubber trees. Therefore, inte-
grating UAV technology with CWT for future identification of rubber tree powdery mil-
dew is expected to greatly enhance the detection efficiency and accuracy.

5. Conclusions

In this study, based on hyperspectral data of rubber tree powdery mildew, three
types of WFs were extracted using CWT for the detection of rubber tree powdery mildew,
namely, PCA-WFs, 1%R2-WFs, and SS-WFs. These features were combined with three
classification methods, RF, SVM, and BPNN, to establish rubber tree powdery mildew
detection models. Based on the results, the following conclusions were drawn:

(1) The overall magnitude of the spectral curves of rubber tree leaves increases in the
visible and near-infrared wavelength ranges as the disease severity progresses.
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(2) All three selected WFs can effectively detect the severity of rubber tree powdery mil-
dew. The models constructed based on PCA-WFs exhibited relatively high accuracy
and exceptional stability. The models based on WFs all outperform those based on
SFs. For example, the OA based on the RF classification method exhibits prominent
improvements of 46.7%, 49.4%, and 42.7%, respectively. For models based on the
same WF type, those constructed with the RF classification method achieve the high-
est OA and kappa coefficient. In particular, compared with the BPNN and SVM
methods, the model’s OA improves by more than 5% and 8%, respectively.

(3) The model combining PCA-WFs with RF demonstrates the best performance among
all models, achieving an OA of 92.0% and a kappa coefficient of 0.90. This demon-
strates the feasibility of CWT in the detection of rubber tree powdery mildew.

However, it is important to note that our study lacks additional independent datasets
for validation. Future research will acquire more diverse leaf samples representing differ-
ent rubber tree varieties to serve as independent datasets. This endeavor aligns with the
need to enhance the robustness and generalizability of our findings. Moreover, future re-
search will focus on employing UAV remote sensing imagery and performing compre-
hensive analyses of rubber tree canopy structure, texture, and related information for the
application of rubber tree powdery mildew identification, aiming to establish a more com-
plete and holistic detection model.
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