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ABSTRACT The outbreak of Oriental Migratory Locust(Locusta migratoria manilensis) causes devastating
disasters to agriculture. With the impact of climate changes and human activities, the distribution of locust
habitat (locust habitat is the environment in which locusts live and survive) in China is constantly changing.
Monitoring and extracting locust habitat are of great significance for guiding large-scale agricultural
production. The occurrence of the locust is closely related to their habitat. Therefore, a comprehensive
analysis of habitat factors that affect locust survival is carried out to monitor locust habitat distribution.
Besides, the landscape structure also affects distribution. This study explored a model for analyzing multi-
temporal Landsat and MODIS images, which combined multiple habitat factors and landscape structure to
analyze locust habitat. The locust habitat near North Dagang Reservoir in Tianjin is the research object.
First, the habitat factors that affect locust oviposition and growth were analyzed, and vegetation coverage,
land cover class, soil moisture, soil salinity, and land surface temperature were selected as five habitat factors.
The weights of five habitat factors were evaluated according to the Analytic Hierarchy Process (AHP)model.
Then, considering the impact of landscape structure on locust habitat, a moving-windowwas used to correlate
locust habitat factors at pixel scale with locust habitat at patch scale. Finally, the distributionmap of the locust
habitat at patch scale was generated. The Analytic Hierarchy Process(AHP) was used to compare and test
the results. Our research shows that the Patch based - Analytic Hierarchy Process (PB-AHP) can monitor
locust habitat. The overall accuracy reached 88%, which is 10% higher than the result based on the Analytic
Hierarchy Process(AHP). These results show that the Patch based - Analytic Hierarchy Process (PB-AHP)
model has strong robustness and generalization ability in identifying locust habitat and can provide scientific
guidance for locust monitoring and control.

INDEX TERMS Locust habitat, landscape, patch based - analytic hierarchy process (PB-AHP), remote
sensing.

I. INTRODUCTION
The Oriental Migratory Locust (Locusta migratoria manilen-
sis) is a destructive agricultural pest in China [1], [2]. Locust
is a major threat to crops such as wheat, maize, rice, and has
caused massive economic damage [3], [4]. The outbreak of
locust plague could have a significant and negative impact
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on food security, ecological security, and social stability
[5]. In China, the total acreage impacted by locust changed
little from 2003 to 2018, at around 667 thousand hectares.
In recent years, China has made remarkable gains in control-
ling locust plague. However, with additional impacts from
global warming, drought, environmental changes, and human
activities, new locust habitat has been created that does not
have adequate monitoring by plant protection departments,
which means that sudden locust plagues in the unexpected
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location are a continuous threat [6], [7]. Locust control
must be carried out before migration occurs, and having an
accurate description of the area needing management is the
key to minimizing the harms [8]. As a result, real-time and
large-scale quantitative monitoring of locust habitat is indis-
pensable to achieve accurate, effective, and environmentally-
responsible prevention and control.

For this research, the study area is located in the Tianjin
municipality of China and contains North Dagang Reser-
voir, Duliujian River, and Lier Bay. This area is a typical
locust area in China [9]. The reducing water levels in major
rivers and reservoir are and increasing abandoned cropland
have provided ideal environments for locust oviposition and
growth since the mid-1990s [10], [11]. According to statis-
tics provided by Tianjin Plant Protective Station (TPPS),
the annual occurrence area of summer locust in the study
area had exceeded 20 thousand hectares since 2000. Locust
density in severe plague years was as high as 4-5 thou-
sand per square meter (http://www.tjpps.cn/). Due to the
large size of the potential infection area and its unsuitabil-
ity for human activity, as well as the changing habitat of
locust, traditional artificial reconnaissance has become more
difficult [12], [13].

Satellite-based remote sensing technology can visualize
the large area, provides dynamic, real-time, and periodic
observations, and makes it possible and convenient to locust
habitat monitoring. Combining the availability of remote
sensing data and the physiological mechanism of locust
oviposition and growth, it is believed that the current research
about locust habitat monitoring based on remote sensing is
mainly carried out from vegetation, soil, and climate, mainly
including habitat factors such as vegetation coverage, land
cover class [14]–[16], soil moisture, soil salinity [17], [18],
temperature [19] and so on. In the early stage of locust habitat
monitoring, the research was based on the extraction of a
single habitat factor using satellite data. For example, Tratalos
and Cheke [20] used AVHRR data to obtain the Normalized
difference vegetation index(NDVI) and conducted habitat
classification research on desert locust. Piou et al. [21] found
that the use of NDVI at 250 meters resolution, combined with
the coherent construction of secondary indicators obtained
from NDVI time variation, and can predict the presence of
desert locust. Sinha and Chandra [22] found the relationship
between areas with high NDVI and locust activity based on
a visual approach. Renier et al. [23] used MODIS data to
develop a dynamic vegetation senescence index to realize
near-real-time desert locust habitat monitoring and identify
areas that may be effective by locust. Deveson [24] used the
one-month positive change in NDVI to measure changes in
nymph distributions. Waldner et al. [25] used Landsat TM
and MODIS data to generate a dynamic vegetation greenness
map in Mauritania and monitored desert locust habitat in
combination with vegetation coverage. Bolkart et al. [26]
applied MODIS and Landsat TM images to map locust dis-
tribution in the southern part of the Aral Sea and found that
locust density was highest in areas with dried reeds, while

low or almost no locusts were found in shrub and crop-
land areas. The above studies revealed certain relationships
between habitat factors and locust habitat monitoring, but
most of them are based on the monitoring of a single habitat
factor. Low et al. [27] extracted the inter-annual Enhanced
vegetation index (EVI) curve based on images from multi-
temporal MODIS data to differentiate land cover classes and
consequently drew potential locust habitat.

Besides, some scholars have also comprehensively consid-
ered the impact of multiple factors to analyze locust habitat.
Huang et al. [28] built a model to monitor locust population
density by considering the impact of surface temperature, soil
moisture, Leaf area index (LAI), and other habitat factors.
Shi et al. [29] integrated MODIS and Landsat remote sensing
images to extract land cover classes, vegetation coverage, and
Land surface temperature(LST) to obtain the distribution of
locust areas near the North Dagang Reservoir in Tianjin.

On the other hand, the spatial distribution of locust habitat
is patchy, and changes in landscape structure can impact geo-
graphic patches [29]. This means that the landscape structure
of the ecosystem in which locusts live continuously affects
the suitability of their habitat [30], [31]. The interaction of all
these factors and how to transit from pixel scale to patch scale
in this geographic area may affect locust habitat suitability.
Monitoring changes in landscape structure through remote
sensing data can be extremely useful when trying to extract
locust habitat accurately [32], [33]. However, most existing
models do not consider the impact of landscape structure on
locust habitat. Thus, evaluating the feasibility of using remote
sensing data coupled with multiple habitat factors at patch
scale to monitor locust habitat is necessary.

In this study, the Patch based - analytic hierarchy process
(PB-AHP) model was used to extract landscape structure
considering multiple factors, and a locust habitat suitability
analysis was completed by analyzing the suitable degree and
weight of different habitat factors at patch scale in Tianjin,
China. Landsat TM/OLI and MODIS data were used in this
study. Specifically, the goals of this article were to: (1) ana-
lyze the impacts of multiple habitat factors and landscape
structure on the locust habitat, (2) propose a model named
PB-AHP to quantify both landscape and multiple habitat
factors on locust habitat, and (3) evaluate the performance of
the newmodel. By utilizing remote sensing images tomonitor
locust habitat, environmentally safe locust prevention and
control methods can be developed to guide more effective
precision agricultural research and management practices.

II. MATERIALS AND METHODS
A. STUDY AREA
The study area is located in the Binhai New District in south-
east Tianjin, China (Fig.1). This study selected an area of
822.23 km2, which contained the North Dagang Reservoir,
Lier Bay, and Duliujian River. This area lies in a northern
hemisphere with a monsoon climate of medium latitudes and
has four distinctive seasons. The average annual rainfall is
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FIGURE 1. The location of Binhai New District in Tianjin (a), the study area
(b) in the southeast of Binhai New District covering the typical locust area.

350–620 mm, of which 80% is concentrated from May to
September. The annual mean temperature is 12-15◦ in this
area. Bog and fluvo-aquic soils are the most distributed
soil types. Enough water resources provide a suitable envi-
ronment for the local wetland vegetation, which includes
reeds such as Phragmites communis Trin, Typha orientalis
Presl, and Lythrum salicaria L., with some weeds scattered
around, such as Eehinoehloa crusgall (L.)Beauv., Imperata
cylindriea (L.)Beauv., Cynodon dactylon(L.)Pars., Cyperus
rotundus(L.), Polygonum amphibiuln L., and Artemisia spp.
The main crops grown locally include maize, cotton, barley,
and sorghum. Locust growth and propagation are helped by
less human intervention near wetlands and suitable habitat,
which can lead to severe plague in the study area [34].

B. DATA SOURCE
1) SATELLITE DATA
The remote sensing data used in this article are MODIS and
Landsat images. Cloud-free Landsat images or few cloud
Landsat images (path:122, row:33) were chosen, includ-
ing TM and OLI images from 2000-2015. Before locust
habitat factors were extracted, Landsat images were cali-
brated using the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes module (FLAASH, a module in ENVI
5.3 image processing software) to eliminate the influence
of atmospheric and light factors on the objects’ reflectance.
Thismodule enhanced the image brightness to facilitate infor-
mation extraction. All parameters for the input FLAASH
module are set according to the metafile of the image.
Using MODIS(h27v05) products (MOD11A2) from April to
May in 2000-2015 to indicate the LST of the study area.

2) STATISTICS ON PLAGUES OF LOCUST
Historical observations of locust occurrence data provided by
TPPS from 2000 to 2018, contained the locust occurrence
area and locust control area, and locust density in some
years. Considering that these data are exclusive, TPPS did
not provide specific investigation location or ID numbers.

TABLE 1. The numbers of land cover class reference samples in different
years.

Due to the particularity of migratory pests, point sample
data is difficult to get. Based on locust occurrence area and
locust density data provided by TPPS, 10 sample points from
each of the four suitable areas in 2002,2006 and 2013 were
selected for analysis in this study in combination with textual
description information, for a total of 40 sample points per
year.

3) LAND COVER CLASS AND DATA
Considering the special ecological environment and locust
preferred host selection, four land cover classes were
defined: reed and weed, pure reed, cropland, water, and oth-
ers [29]. ‘‘Reed and weed’’ was defined as weeds and other
grasses (rarely) which grew in moist or semi-dry soil, with
vegetation coverage ranges between 20% and 70%. These
conditions provide a suitable condition for locust reproduc-
tion and development. Vegetation coverage of 20-50% is the
most suitable for promoting spawning and nymph growth,
and 50-70% is ideal for locust migration. ‘‘Pure reed’’ was
defined as pure reed vegetation with vegetation coverage
of 40-100%. This environment provided plenty of food for
locust growth. Low-density areas of 40-50% coverage pro-
vide a suitable environment for spawning and nymph growth
of locust, while 50-80% coverage denoting high-density areas
are ideal for locust migration. ‘‘Cropland’’ was defined as
crops with 10-60% vegetation coverage, mainly composed
of cotton, barley, corn, peanut, sorghum, a small count of
weed and reed. Agriculture and other human activities in
the region are frequent make it impossible to provide a suit-
able environment for locust reproduction and spawning. But
this field can provide a destination for migration. ‘‘Other’’
includes bare soil where salt accumulation on the surface and
artificial area [29].

Quantitative analysis of locust host species requires a ref-
erence land cover dataset. In order to collect these refer-
ence data, this study used the national historical land use
survey at a 30m spatial resolution (http://www.resdc.cn/) to
preliminarily mark the reference pixels in Landsat data. Since
historical survey data are not available annually, this study
only collected data for the year 2000,2005, and 2010, and
evaluated the land cover classification for these three years
based on this data.

C. ANALYTICAL METHODS
1) SELECTION AND EXTRACTION OF HABITAT FOACTORS
Based on the analysis of the relationship between locust
populations and habitat factors in the study area, five factors
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related to the suitability of locust habitat were determined,
including vegetation coverage, land cover class, soil mois-
ture, soil salinity, and LST.

Multi-temporal Landsat data were used to get vegetation
coverage, soil moisture, and soil salinity. The mean vegeta-
tion coverage of three phases in the locust critical growth
period from May to June was selected as a final variable.
The mean soil moisture and soil salinity of three phases
from April to May during the locust oviposition period was
used as final variables. By calculating the mean value of
MODIS(MOD11A2) from April to May, LST was obtained.

NDVI =
Bnir − Br
Bnir + Br

(1)

where NDVI represents vegetation coverage, Bnir and Br
are the reflectance in the near-infrared band and red band,
respectively.

TVDI =
Ts − TSmin

Tsmax − Tsmin
(2)

Tsmax = a ∗ NDVI + b, Tsmin = c ∗ NDVI + d (3)

where TVDI is the temperature vegetation dryness index to
represent soil moisture, a, b, c, d are the coefficients of the
dry, wet edge fitting equation, respectively.

SI =
√
Bg ∗ Br (4)

where SI is soil salinity index to represent soil salinity, Bg and
Br are the reflectance in the green band and red band.
Before habitat suitability analysis, these data need to be

converted into a raster map of corresponding habitat fac-
tors. In this study, the spatial analysis tool is used to stan-
dardize raster data into numerical data, and each factor is
quantified with a score of 0-1. The standardized equation is
as follows:

x =
S − Smin

Smax − Smin
(5)

among them, Smin represents the minimum value of each
index in the study area, Smax represents the maximum value
of each index in the study area.

2) LAND COVER MAPPING
The land cover class map was obtained from Landsat data
using a random forest classifier based on seasonal char-
acteristics (SCRF) [27]. Random forest is a classifier that
uses multiple trees to train and predict samples. This imple-
mentation produces a large number of individual decision
trees that are randomly selected from input and training
data using bagging or bootstrap [36]. An EVI time series
based on Landsat images was as seasonal features of differ-
ent land cover classes. Because Landsat data is affected by
the atmosphere, solar illumination angle, observation angle,
and other factors, EVI decreases irregularly. This irregular-
ity affects the accuracy of the time inversion of seasonal
characteristics, resulting in the inability to correctly reflect
land cover changes [36]. To address this, the Savitzky-Golay

(S-G) filtering method was used to reconstruct the EVI time
series [37]:

Y ∗j =
i=m∑
i=−m

CiYj+1 (6)

where Y ∗j is the synthetic sequence data, Yj+1 is the original
sequence data, Ci is the filtering coefficient (2m+ 1), and m
is half the width of the smoothing window.

Land cover classification accuracy is assessed using a
confusion matrix including user, producer, and overall accu-
racy. The confusion matrix is a comparison array used to indi-
cate the number of pixels classified into a certain category and
the number of ground survey pixels. Generally, the columns
in the array represent reference data, and the rows represent
category data obtained from remote sensing data classifica-
tion. Overall accuracy is equal to the sum of correctly clas-
sified pixels divided by the total number of pixels. Producer
accuracy refers to the correct classification percentage of all
test samples in a feature category. User accuracy refers to the
percentage of each category marked after classification to the
exact category in ground survey pixels [38].

The land cover dataset described in section II.B.3) is the
training sample and the verification sample of SCRF in this
study, the ratio is 7:3. MATLAB 2017a is used to process the
SCRF algorithm.

3) LOCUST HABITAT SUITABILITY ANALYSIS BEASED
ON AHP MODEL
a: FAOTOR SUITABILITY AT PIXEL LEVEL
Vegetation coverage is the main variable affecting locust
habitat. Generally speaking, if the vegetation coverage is too
high, the sun will be blocked, and the temperature near the
ground will be low, restricting locust feeding and movement
and negatively impacting spawning. On the contrary, if the
vegetation coverage is too low and the near-ground temper-
ature is relatively high, locust activity increases but is not
conducive to overall survival because of insufficient feeding
materials and the lack of ideal shelter.

Low-lying and flat wetlands with reed and weed provide an
ideal place and food source for locust oviposition and growth
[39], [40]. Thewater resources provide suitable conditions for
locust eggs hatching and nymph growth. Pure reed, which has
high vegetation coverage, could provide an ideal environment
for locust migration [41]. To better link, the types of land
cover with locust habitat, the suitability of each land cover
class (Table 2 ) was classified according to the influence of
different classes on locust growth. Reed andweed represented
the best shelters, followed by water, pure reed, cropland,
and other (water affects the suitability of locust habitat in
the landscape structure, but water is not locust habitat. The
suitability degree of water here is used only for its influence
at patch level).

If the soil moisture is high and the soil temperature is low,
the development of locust eggs will inevitably be adversely
affected. When soil salinity is too high, it is not conducive
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TABLE 2. The suitability of each habitat factor at pixel scale.

TABLE 3. Initial weight (obtained by multivariate analysis) and final
weight (Obtained by Ahp) of different habitat factors.

to egg hatching, and the growth of halophytes negatively
affects locust growth and development [30]. The surface tem-
perature mainly affects the hatching of eggs, and only when
the temperature accumulation reaches a certain value can
the biochemical reactions needed in the hatching process is
completed [29]. Table 2 was used to determine the suitability
levels of different habitat factors.

b: DETERMINATION OF FACOTR WEIGHT
The Analytic hierarchy process (AHP) model was used to
determine the weight of each habitat factor, which reflects the
influence of each factor on locust survival and occurrence.
The output of AHP is a set of rankings that can be used
to support decision making for many alternatives based on
multiple decision factors for each alternative [41]. The model
combines each habitat factor [42]. This process consisted of
five steps, which included: (1) defining and determining the
factors (see in II.C1)); (2) conducting factor importance anal-
ysis: based on Landsat data, this study extracted all habitat
factors, analyzed the correlation between each habitat factor
and the locust area provided by TPPS from 2000-2015, and
used the correlation index as the initial importance of each
habitat factor; (3) determining the local priority: using the
binary comparison method, the priority was calculated before
the habitat factor pair to construct the judgment matrix; (4)
sorting and calculating the weight of relative importance of
all factors to the final goal according to the judgment matrix;
(5) conducting the consistency test: when the consistency test
result was less than 0.1, the ranking was considered to pass
the test.

The habitat suitability index(HSI) for locusts based on the
AHP method is as follows:

HSI1(x, y) =
∑n

t=1
WtMt (x, y) (7)

where HSI1(x,y) is the overall score of habitat suitability at
pixel scale;Wt is the weight of each factor (Table 3 ),Mt (x,y)

is the suitability at pixel scale of the tth factor, n is the number
of factors.

The locust habitat suitability was divided into four cate-
gories: Poor locust habitat (POLH), General locust habitat
(GELH), Good locust habitat (GOLH) and Optimum locust
habitat (OPLH). The HSI of every category is shown in
table 4.

4) LOCUST HABITAT SUITABILITY ANALYSIS BEASED
ON PB-AHP MODEL
The Patch based - analytic hierarchy process (PB-AHP)
model was combined with patch scale modeling to realize
more practical monitoring of patchy target objects. To better
quantify patch size, we used a moving-window approach
which associated the suitability at patch level with the suit-
ability at the pixel level. In order to consider the com-
prehensive impact of landscape structure on locust habitat,
additional information from neighboring pixels in the same
window was introduced. The setting of the moving-window
involves the choice of its window size. Window size has a
significant influence on locust habitat. Too small window size
might lead to limited space, which results in failure to form a
locust habitat. Too large window size might lead to the scatter
of locust growth resource, which is not conducive to locust
gathering. This study used Ecognition Developer software to
analyze the level of information of the original image objects
and the proximity information between the objects. Based on
this information, the original image object size was obtained,
and combined with land cover classification to determine the
size of the patchy habitat target object of locust.

The suitability at patch level was defined as:

My,p(x(c+1)/2, y(c+1)/2) =

∑c
j=1

∑c
k=1WpMt (xj, yk )∑c

j=1
∑c

k=1Wp
(8)

where,My,p(x(c+1)/2, y(c+1)/2) is the suitability degree of each
factor at the patch scale; y = 1, 2, . . . , 5,M1,p, M2,p and . . .

M5,p represents the suitability of five factors at patch level,
respectively; x and y are the numbers of rows and columns
in the study area; c is the number of rows and columns of the
window, in this study, the optimal size was determined to be 5;
Mt (xj, yk ) is suitability at pixel level, andWp is the influence
of neighboring pixel in the same patch on the central pixel,
which could quantify the impact on the landscape.

The weight of spatial distance is expressed by the recipro-
cal of the spatial distance between surrounding pixels (xj, yk )
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TABLE 4. Hsi value description.

FIGURE 2. Flowchart of the research approach.

and the central pixel (x(c+1)/2, y(c+1)/2). The specific formula
is:

Wp(xj, yk ) =
1√(

x(c+1)/2 − xj
)2
+
(
y(c+1)/2 − yk

)2 (9)

which measures the spatial distance between the calculated
pixel and surrounding pixels. Closer pixels normally have
higher spatial similarity; therefore, closer pixels should be
given a higher weight.

The habitat suitability index of locusts based on the PB-
AHP model is as follows:

HSI2(x, y) =
∑n

t=1
WtMy,p(x(c+1)/2, y(c+1)/2) (10)

where HSI2(x,y) is the overall score of habitat suitability
at patch scale; Wt is the weight of each factor (Table 3 ),
My,p(x(c+1)/2, y(c+1)/2) is the suitability at patch scale of the
tth factor; n is the number of habitat factors.

The grading index is shown in Table 4 .

III. RESULTS AND DISSCUSSION
A. LAND COVER CLASSIFICATION
The annual EVI curve (Fig.3) reflects the difference in
reflectivity between different classes of surface coverage.
Although all vegetation classes followed similar seasonal
trends, the amplitudes of the curves during the development
period showed a significant difference. The average EVI from
April to November was calculated, and the EVI curves were
used as the SCRF input database to generate land cover data.

FIGURE 3. EVI series of three land cover classes in 2000, 2005 and 2010.

The land cover classifications confusion matrix can be seen
in Table 5, as well as the overall accuracies of three years
(2000, 2005 and 2010) are 93%, 89%, and 93%. Most of the
confounding classes were a mixture of reed and weed and
pure reed. The SCRF has high precision and can be used to
realize land cover classification. Combined with the existing
land cover verification dataset and locust habitat suitability
dataset, this article drew the land cover classifications in
the year 2000, 2005, 2010, 2002, 2006, and 2013. As can
be seen from the result, the largest land cover class was
cropland, which was mainly distributed in the southwest. The
conversion of a land cover mostly occurs between pure reed
and mixture of reed and weed, which were observed mostly
along major reservoir and rivers (including North Dagang
Reservoir, Duliujian River, and Lier Bay). These two classes
are also important to cover classes for locust breeding.

The land cover classification result showed that the SCRF
was an accurate land cover classifier and can also confirm
results from previous research [43]–[45]. Confirming the
accuracy of land cover is a crucial step needed to assess
ecosystem services such as locust habitat suitability.

B. HABITAT SUITABILITY OF LOCUST
Taking vegetation coverage, land cover class soil moisture,
soil salinity and LST as data input, combined with themoving
window to establish PB-AHP model to analyze the impor-
tance of multiple habitat factors and landscape structure.
The traditional AHP model was used to compare and verify
the approach. The results revealed that PB-AHP model had
higher overall accuracy thanAHPmodel. PB-AHPmodel had
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TABLE 5. Confusion matrix and accuracy of land cover classifications produced by Scrf in 2000, 2005 and 2010.

FIGURE 4. Land cover class maps of 2000, 2003, 2005, 2006, 2010 and 2013.

an overall accuracy of 85%, 83% and 88% in the year 2002,
2006 and 2013, respectively. (Table 6).

Fig.5 shows the locust habitat extracted based on the AHP
model(left) and PB - AHP model (right). The accuracies of
both models were more than 70%, and the results have the
same trend, meaning that both models could effectively be
used for locust habitat suitability analysis. However, the exis-
tence of locust habitat is associative, and locust habitat is
affected by the surrounding environment. By introducing
quantitative analysis of geographical patches, we were able
to give full consideration to the influence of surrounding
landscape structure. Therefore, the consistency and integrity

of patch-based monitoring results were more comprehensive
than pixel-based monitoring results. Accuracy verification
results had similar findings. The accuracy based on the PB-
AHP model was 88%, which is 10% higher than the results
fromAHPmodel. This article provides a quantitative analysis
of these two models from three landscape metrics (including
mean patch size, patch density, and connectivity, Table 7 ).
Based on the analysis of the area of the study area and the
density of locusts obtained from TPPS, the minimum patch
size of the locust habitat is 2 km2. It can be seen from the
mean patch area that the locust habitat patch size analyzed by
the PB-AHP model is larger than the size obtained based on
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TABLE 6. Accuracy verification of habitat suitability analysis results based on Ahp and Pb-ahp models.

FIGURE 5. Locust habitat map in 2002,2006 and 2013 using AHP(left) and PB-AHP(right) models.

the AHPmodel, and the mean patch size of four locust habitat
classes is greater than 2 km2, which is consistent with the
minimum patch size of locust habitat. The connectivity of the
locust habitat analyzed by PB-AHP model is also higher. It is
believed that the locust habitat obtained by PB-AHP model
is less fragmented. This situation is more realistic and the
analysis result is more credible.

Landsat and MODIS data can provide enough data to
support the assessment of ecosystems [5], [46]–[49]. Several
scholars have studied locust habitat using satellite data. In our

research, continuous Landsat and MODIS data ensured suc-
cessful monitoring of locust habitat factors, thus providing
data support for locust habitat suitability analysis. The habi-
tat factors used in locust habitat analysis were determined
by comprehensively considering the incubation period and
occurrence and development period, combining both host
and habitat information. This model was able to evaluate
the hatching habitat suitability and reflect vegetation growth
and spatial distribution. At the same time, the input values
(initial importance) of AHP model were obtained based on
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TABLE 7. The landscape metrics of locust habitat obtained by Ahp and Pb-ahp models.

correlation analysis between locust area from TPPS data
and different habitat factors from 2000 to 2015, which is
independent of expert evaluation and improved the objectivity
of this method.

Besides, locust habitat occurs in discontinuous patches
from the scale of landscapes. These patterns of habitat devel-
opment depend on the landscape structure. Our research con-
structed moving windows by analyzing the patch size of the
original image to carry out quantitatively analyze the land-
scape structure so that to map the locust habitat at patch scale
and realize the contribution evaluation of landscape structure
to habitat suitability classification. Results from this study
can effectively restrain the ‘‘salt and pepper’’ phenomena
by considering the impact of landscape structure on locust
habitat and showing the results from combined and related
habitat factors. Results from this analysis revealed the rela-
tionship between landscape structure and locust habitat and
proved that the addition of landscape structure to the model
made positive contributions to accurately classifying locust
habitat.

The purpose of our research is to improve the accuracy of
the locust spatial distribution model by combining landscape
structure and coupling multiple habitat factors to meet the
current needs of precision agriculture. At the same time,
the suitability of each habitat factor was analyzed, and the
influence on the landscape structure of the locust ecosystem
was considered more comprehensively. In general, this locust
habitat suitability analysis model based on satellite data com-
bined with multi-factors and landscape structure performed
well, with an accuracy rate of 88%, and was able to generalize
automatic locust habitat suitability for years without training
data.

The area around North Dagang Reservoir is known to be
a locust habitat. Monitoring locust habitat and discussing the

landscape pattern and habitat factors that alter it could pro-
vide vital support to help agriculture and plant protection in
planning and controlling damages from the locust population.
Locust habitat maps obtained from satellite data can accu-
rately select the locust control area. Even more importantly,
these detailed habitat mapswould help redistribute prevention
and control treatments more economically and equitably
within the study area, reducing waste associated with un-
optimized management. These results can also provide a
basis for ecological locust control, which helps reduce water
pollution and damage to the environment [50]–[52]. While
ecological control technology cannot kill locust directly,
it uses an ecological transformation to reduce the breeding
area, decrease food sources, and control the occurrence area
and density. Another aspect is that this multi-year analysis
and derived occurrence frequencies of OPLH and GOLH
provide the possibility for long-term planning and centralized
control measures. At the same time, we can isolate OPLH and
GOLH such as North Dagang Reservoir, Duliujian River, and
Lier Bay to prevent locust proliferation from ever occurring.

IV. CONCLUSION
Our research validates the potential of earth observation
methods to analyze locust habitat in Tianjin. PB –AHPmodel
used in this study analyzed the habitat selection during locust
hatching and development, and selected five significant habi-
tat factors, including vegetation coverage, land cover class,
soil moisture, soil salinity, and land surface temperature.
The inversion result of each factor from 2000 to 2015 was
obtained by using the time series from Landsat and MODIS
image data. The AHPmodel was used to obtain the weights of
influence for different habitat factors, and the degree of patch
scale suitability was obtained through quantitative analysis of
landscape structure, allowing the distribution map of locust
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habitat in the study area to be drawn. The overall accuracy
of the model was 88%, which performed 10% better than
the traditional AHP model. This study not only confirms the
importance of vegetation, soil, and climate for monitoring the
locust habitat but also noted the contribution of landscape
structure. In addition, this model does not simply determine
locust and non-locust areas but quantifies the habitat suitabil-
ity. This model is strongly generalizable and has significant
real-time capabilities for incorporating newly acquired data.

Future work will be a more in-depth study of the relation-
ship between landscape structure, locust habitat, and locust
occurrence mechanism. It is necessary to analyze the changes
in locust habitat caused by changes in landscape structure
and combine with actual control requirements to improve the
level of locust monitoring and early warning and establish
scientific research results on locust monitoring and early
warning to bridge industrial pest control.
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