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It is highly important to accurately monitor wheat scab and provide technical guidance for the crop pests and diseases. In this
study, relevant analysis was performed among spectral reflectance, first-derivate data, and the disease severity data through ASD
hyperspectral data. Two sensitive spectral wavelength ranges of 450–488 nm and 500–540 nm were selected. +en, a new wheat
scab index (WSI) consisting of the two bands was proposed. +e inversion models of the scab severities were comparatively built
by unitary linear regression and multiple stepwise regression techniques. +e results showed that the WSI had a significant linear
relationship with severity of disease compared with other commonly used spectral indices. +e fitting R2, testing R2, and RMSE
were 0.73, 0.70, and 13.41, respectively. +e multiple stepwise regression model established using the WSI, SDg/SDb, NBNDVI,
and SDg as independent variables was better than the single-variable model. Our results suggest that WSI can be used to provide
scientific guidance for monitoring and precise management of wheat scab disease.

1. Introduction

China is a big agricultural country with vast land and
abundant agricultural resources. Wheat is the second largest
food crop in China, and its planting area ranks second.
During the growth period of wheat, the occurrence of some
pests and diseases will seriously affect the yield and quality.
As one of the seriously infected diseases, wheat scab caused
by a variety of Fusarium is a widespread and global disease
occurring in warm and high-humidity environments [1].
According to the statistics, when the severe occurrence of
wheat scab disease is about 50%∼100%, the yield can be
reduced by 40% [2]. Conventional stress-detection methods
depend on physiological and biochemical analysis by field
pathologists or experienced people. +ey are usually de-
structive, time-consuming, and labor-intensive. It is difficult
to adapt to the current urgent needs of large-scale, real-time
monitoring, and forecasting of pests and diseases [3, 4].

+erefore, how to quickly and accurately monitor wheat
scab is an urgent problem to be solved.

Studies have shown that [5] some spectral characteristics
change when vegetation is stressed. For example, the red
edge will move to the shortwave direction when a plant is
suffering from stress, and it is called “blue shift.” +is
phenomenon usually takes place with the displacements of
only a few nanometers to twenty nanometers [6]. It is
difficult to capture this displacement using the traditional
wide-band remote sensing data with hundreds of nano-
meters wide. Conversely, hyperspectral data with abundant
band information and high resolution were used to detect
the spectral response to diseases in more studies [7]. Many
scholars used the hyperspectral data to analyze the spectral
reflectance and found the sensitive bands for disease
identification. For example, Graeff et al. [8] pointed out that
the six wavebands of 490 nm, 510 nm, 516 nm, 540 nm,
780 nm, and 1300 nm could produce significant spectral
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responses to wheat powdery mildew. Huang [9] proposed
that the spectral regions of 630–687 nm, 740–890 nm, and
976–1350 nmwere sensitive to stripe rust. Delwiche and Kim
[10] found that wheat scab could cause spectral responses at
550 nm, 568 nm, 605 nm, 623 nm, 660 nm, 697 nm, 715 nm,
and 733 nm. Different plants have different spectral char-
acteristics, but the same plant may have different spectral
characteristics at different growth stages and environments
[7]. +e response of the spectra to changes in plant physi-
ology, biochemistry, morphology, and structure is highly
complex. It is sometimes difficult to reflect the corre-
sponding information accurately only through the initial
spectral reflectance. Some more specific spectral indices can
be proposed based on the hyperspectral data.

+e spectral index can realize the identification and
monitoring of different diseases by filtering and combining
original bands. Bravo et al. [11] used the normalized differ-
ence vegetation index (NDVI) to extract the wheat stripe rust
using discriminant analysis with an overall accuracy of over
95%. Zheng et al. [12] proved that the three-band spectral
indices PRI (570, 525, and 705 nm) and ARI (860, 790, and
750 nm) are optimal for monitoring yellow rust infection at
different growth stages. Jiang et al. [13] found that the ratio of
the first-order differential sum (SDr′) in the red region
(725–735 nm) to the first-order differential sum (SDg′) in the
green region (520–530 nm) is sensitive to the early symptoms
of wheat disease. +e correlation coefficient with the disease
index reaches 0.921, indicating the differential vegetation
index SDr′/SDg′ is suitable for early diagnosis of wheat diseases.

Although many studies have been conducted on wheat
disease, there is little research on scab. Most of the scholars
used hyperspectral data to study stripe rust, powdery mil-
dew, and aphid on leaf or canopy scale. Scab is a typical ear
disease, so a proprietary index that can be used to monitor
wheat ear-scale scab is desirable. +erefore, based on pre-
vious studies, our study aimed (1) to identify wavebands that
are sensitive to wheat scab at ear scale; (2) to construct a new
spectral index (WSI) for characterizing the spectral changes
caused by scab infestation; and (3) to evaluate the perfor-
mance of the proposed WSI for retrieving scab severities
using linear regression method.

2. Materials and Methods

2.1. Study Site. +e experiment was carried out at a test field
in Guohe Town, Lujiang County, Anhui Province
(31°25.6′N, 117°9.2′E), onMay 8, 2018 (Figure 1). Rich water
resources and suitable climate provide favorable conditions
for the incidence of wheat scab, so the disease occurs almost
every year. +e wheat cultivars “Yangmai,” “Ningmai,” and
“Wanxi” were selected as the experimental samples because
of their moderate susceptibility to scab. +e sowing time of
wheat was around October 2017, and the harvesting time
was around mid-June 2018. +e test time was in GS stages
when the scab showed severe infection.

2.2. Spectral Acquisition of Wheat Ear. +e spectral re-
flectance of the wheat ear was collected with an ASD

FieldSpec Pro spectrometer (350–2500 nm) with the
spectral resolution of 3 nm during the 350–1000 nm and
10 nm within the 1000–2500 nm range. Measurements
were taken at sunny noon time (10 : 00–14 : 00). During the
measurement, every wheat ear was placed in the middle of
the black cloth, and the probe of the sensor was held
vertically downward to measure the upright, front, and
side data. A 40 cm × 40 cm BaSO4 calibration panel was
measured to correct the reflectance. +e spectra in dif-
ferent directions for each sample were measured 20 times,
and then the mean was used as the reflectance. Hyper-
spectral data for the front, side, and upright sides of each
wheat ear were finally determined.+e calculation formula
is as follows:

R
1

�
DN1

DN2
× R

2
, (1)

where R1 is the target reflectance, DN1 is the gray value of the
target spectrum, DN2 is the gray value of panel, and R2 is the
panel reflectance.

2.3. Determination ofDisease Severity. +e disease severity is
defined using the proportion of the infected spikelets to the
total number. According to the rules for monitoring and
forecast of wheat head blight (GB/T15796-2011), it is divided
into 5 levels: Level 0 (0), Level 1 (0–1/4), Level 2 (1/4–1/2),
Level 3 (1/2–3/4), and Level 4 (3/4–1).

In the experimental field, 41 sample plots were selected
and an infected wheat was randomly selected as our research
sample from each sample plot. A total of 41 infected wheat
samples were obtained with different severity levels from the
field survey (Figure 2). Each sample data was averaged from
the front, side, and upright spectral reflectance. +e healthy
samples were not collected in this survey. According to the
calculation of disease severity, the samples of levels 1–4 were
10, 13, 12, and 6, respectively. +e spectral curve of wheat
ears had serious noises after 1330 nm, so the 350–1330 nm
was selected in this study.

2.4. Data Analysis

2.4.1. Calculation of Spectral Differential. In order to analyze
the spectral response characteristics of wheat scab, we av-
eraged the sample spectral reflectance of each level. A
correlation analysis was performed between spectral re-
flectance and disease severity was used to pick up the
sensitive positions and ranges. However, due to the influence
of noise, we failed to achieve good results through the
original spectral reflectance. +e spectral differential was
used to reduce external influences, and its formula is as
follows [14]:

P′ λi(  �
P λi + 1(  − P λi − 1(  

2Δλ
, (2)

where λi is the wavelength of the band i, P′(λi) is the dif-
ferential value of λi, P(λi + 1) and P(λi − 1) are the previous
and next spectral reflectance of λi, respectively, and Δλ is the
difference of λi− 1 to λ.
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2.4.2. Leave-One-Out Cross Validation. Leave-one-out cross
validation was applied to verify the classi�cation accuracy.
Its main idea [12] is that one sample is �rst selected ran-
domly from the N samples, and the other N− 1 samples are
used as the training samples. A model will be obtained to
verify the accuracy with the selected single data, so repeat N
times. �e root mean square error (RMSE) was used to
evaluate the model shown as follows [14]:

RMSE �

������������
∑ni�1 yi − y∧i( )2

n

√

, (3)

where yi and y∧i represent the measured value and the
predicted value, respectively, and n is the total number of
samples. �e smaller the RMSE is, the higher the prediction
accuracy of the model is.

2.4.3. Selection of Vegetation Index and Di�erential Spectral
Characteristics. Spectral indices are widely used for mon-
itoring, analyzing, and mapping temporal and spatial
variation in vegetation [15]. Spectral indices are the basis
for wide applications in remote sensing-based crop man-
agement because they are highly correlated to biophysical
and biochemical crop variables [16]. Infected crops can
cause changes in pigment, water, morphology, structure,
etc. Some indices can characterize these changes, for ex-
ample, NDVI can re�ect the growth of crops and NRI
(nitrogen re�ectance index) is a factor to study the nitrogen
content of vegetation. We summarized the spectral features
commonly used in crop stress through the literature review.
A total of 22 spectral features including �rst-order dif-
ferential spectral features and vegetation indices were se-
lected (Table 1).

2.4.4. Unitary Linear Regression. �e unitary linear re-
gression is a relationship between an independent variable
and a dependent variable. It is the simplest regression
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Figure 1: Location of the study site.
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Figure 2: Spectral re�ectance curves of 41 wheat ear samples.
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method and also the basis for learning other regression
methods. +e model of the linear regression is [30]

y � ax + b, (4)

where y is the dependent variable, x is the independent
variable, and a and b are the regression constants.

2.4.5. Multiple Stepwise Regression. Multiple stepwise re-
gression algorithm is often used for regression analysis of
two or more independent variables and dependent variables.
+e main principle is to determine its importance by the F-
test for each introduced variable. Meanwhile, the T-test is
performed on the variables introduced into the model.
When the first introduced variable is no longer significant
for the dependent variable due to the introduction of new
variables, the variable will be deleted. Only the important
variable is retained in the regression model. Assuming there
are n independent variables (x1, x2, . . . , xn) and y is used as
the dependent variable, then the multiple stepwise re-
gression model is defined as follows [31]:

y � a1x1 + a2x2 + · · · + anxn + a0, (5)

where ai (i � 0, 1, . . . , n) is the pending regression constant.

3. Results and Discussion

3.1. Spectral Response Characteristics and Correlation
Analysis. It can be seen from Figure 3 that with increasing

disease levels, the spectral reflectance of scab-infected wheat
decreases in the near-infrared region, while it increases in the
visible region and the “green peak” and “red valley” gradually
become gentle. +is is because when the crop is infected by
pathogens, it will cause many lesions, necrosis, or wilting in
the leaves of the plants. +e content and activity of the
pigments are reduced, resulting in an increase in the re-
flectance of the visible region. Moreover, the water meta-
bolism of infected plants will be disturbed, which will cause
the water deficit of the leaves to some extent, and finally cause
the change of reflectance in the near-infrared region [32].

It can be seen that the visible region is positively cor-
related with the severity of scab, and the near-infrared region
is negatively correlated with the severity of scab (Figure 4).
+e band with a correlation coefficient greater than 0.5 in the
visible region (350–740 nm) is 638–690 nm, and the 674 nm
has a highest correlation coefficient (R� 0.598), which is
located in the red region. Because the photosynthesis ability
of wheat is weakened due to the influence of scab, the
correlation coefficient of chlorophyll absorption zone is
increased. In addition, the correlation between the near-
infrared region (760–1300 nm) and the disease severity is
generally low. +e reason may be that the internal structure
of the cell is destroyed and the reflectance is reduced. +e
spectral reflectance of 764 nm in the near-infrared region has
a highest negative correlation (R� − 0.411). According to the
aforementioned analysis, wheat scab has a response in the
visible and near-infrared region. It showed a strong response

Table 1: Definitions of vegetation indices and spectral differential characteristics.

Vegetation indices/spectral differential characteristics Calculation formulas References
NDVI (R840 − R675)/(R840 +R675) [17]
RVSI [(R712 +R752)/2] − R732 [18]
TVI 0.5[120(R750 − R550)− 200(R670 − R550)] [19]
MCARI [(R700 − R670)− 0.2(R700 − R550)]× (R700/R670) [20]
TCARI 3× [(R700 − R670)− 0.2× (R700 − R550)× (R700/R670)] [21]
PRI (R570 − R531)/(R531 +R570) [22]
NRI (R570 − R670)/(R570 +R670) [23]
GNDVI (R747 − R537)/(R747 +R537) [24]
PSRI (R680 − R500)/R750 [25]
SIPI (R800 − R445)/(R800 − R680) [26]
NBNDVI (R850 − R680)/(R850 +R680) [27]

Db
Maximum first-order differential value of the blue

edge (490–530 nm)

[28]

Dy
Maximum first-order differential value of the yellow

edge (550–582 nm)

Dr
Maximum first-order differential value of the red

edge (670–737 nm)

SDb
+e sum of first-order differential value of the blue

edge

SDy
+e sum of first-order differential value of the yellow

edge

SDr
+e sum of first-order differential value of the red

edge

SDg
+e sum of first-order differential value of the green

peak (510–560 nm)

[29]SDg/SDb +e ratio of SDg to SDb
SDy/SDb +e ratio of SDy to SDb
(SDr − SDy)/(SDr + SDy) Normalized ratio of SDr and SDy
(SDg − SDb)/(SDg + SDb) Normalized ratio of SDg and SDb
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in the visible region wavebands, but the correlation between
the original spectral data and the severities of scab was not
high.

3.2. Extraction of Sensitive Bands Based on Spectral Differ-
entiation and Correlation Analysis. According to the first-
order differential spectral curve of four disease severities
(Figure 5), they are different in the visible region of 450–
740 nm. As the disease level increases, we can see the dif-
ferential values of 500–550 nm and 690–720 nm are grad-
ually decreasing, as well as increasing in the region of
550–610 nm. +e regions of 500–550 nm and 550–610 nm
are located on both the sides of the “green peak”, indicating
that the spectral reflectance curve become gentler in the two

regions, which is consistent with the observation of the
above spectral reflectance.

Correlation analysis was used to assess whether signif-
icant relationships existed between the first-order differ-
ential and the wheat scab disease levels (Figure 6). It could be
found that 601 nm had the highest correlation (R� 0.79),
which was located near the right side of the “green peak.” All
the correlation coefficients of 450–488 nm, 500–540 nm,
552–667 nm, and 687–756 nm were greater than 0.5. +e
correlation between the first-order differential and the scab
severity is better than that between the spectral reflectance
and disease severity.

3.3. Construction of Wheat Scab Index. According to the
above analysis, the correlation between the original spectral
data and the disease is not significant, while the first-order
spectral differential has a good correlation with wheat scab.
+ere are four significant correlations between first-order
differential and disease severity during the 450–488, 500–
540, 552–667, and 687–756 nm. +e four wavelength ranges
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Figure 4: Curve of correlation coefficient between spectral re-
flectance and severity of disease.
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Figure 3: Spectral reflectance curves of wheat ear with different
scab severity.
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are located in the chlorophyll absorption zone, the blue edge,
the yellow edge, and the red edge, respectively. When
vegetation is infected by disease, the spectral reflectance of
the chlorophyll absorption zone changes with the chloro-
phyll content. Relevant studies have shown [33] that the
blue, yellow, and red edge of plants can be used to monitor
crop pests and diseases. +erefore, this section attempts to
use the first-order spectral differential sum of these four
bands to construct the scab index. As these four wavebands
are adjacent to each other, the sum of the first-order dif-
ferential values of the four bands may have redundancy.
+erefore, we make correlation analysis of the first-order
differential sum of the four band intervals and choose the
weakly correlated bands of 450–488 nm and 500–540 nm to
construct the wheat scab index (WSI). +e correlation co-
efficient between different wavebands and the method to

construct WSI are shown in Table 2 and formula (6),
respectively.

WSI �
SD450− 488 − SD500− 540

SD450− 488 + SD500− 540
. (6)

3.4. Unitary Linear Regression. +e purpose of this experi-
ment is to analyze the sensitivity of existing vegetation in-
dices and spectral differential characteristics to wheat scab
under linear regression conditions and to verify the appli-
cability of the proposed scab index. Table 3 summarizes the
unitary linear regression responses of all spectral indices
(including WSI) to wheat scab disease. We found that the
selected 23 indices manifested excellent potential for dis-
criminating wheat scab (p< 0.001). However, not all the

Table 2: Correlation of the first-order differential sum between four wavelength regions.

450–488 nm 500–540 nm 552–667 nm 687–756 nm
450–488 nm 1
500–540 nm − 0.20839 1
552–667 nm 0.696811 − 0.81765 1
687–756 nm − 0.43428 0.746772 − 0.73471 1

Table 3: Unitary linear regression results of vegetation index and spectral differential characteristics.

Vegetation indices/spectral differential characteristics Regression equations Fitting R2 Testing R2 RMSE
NDVI∗∗∗ y� − 230.43x+ 190.6 0.66 0.62 15.90
RVSI∗∗∗ y� 2050.4x+ 94.691 0.46 0.41 18.97
TVI∗∗∗ y� − 3.1273x+ 121.01 0.51 0.46 18.04
MCARI∗∗∗ y� − 312.63x+ 98.836 0.56 0.52 17.03
TCARI∗∗∗ y� − 318.56x+ 109.58 0.32 0.26 21.10
PRI∗∗∗ y� 939.73x+ 9.7802 0.23 0.17 22.39
NRI∗∗∗ y� 218.71x+ 46.115 0.60 0.56 16.24
GNDVI∗∗∗ y� − 255.18x+ 205.82 0.29 0.22 21.74
PSRI∗∗∗ y� 512.1x − 2.8595 0.63 0.60 15.64
SIPI∗∗∗ y� 246.27x − 241.23 0.63 0.59 15.72
NBNDVI∗∗∗ y� − 237.09x+ 190.71 0.67 0.63 14.85
SDb
∗∗∗ y� − 2863.5x+ 86.013 0.37 0.32 20.42

Db
∗∗∗ y� − 74747x+ 83.754 0.46 0.41 18.89

SDy
∗∗∗ y� 5342x+ 49.266 0.64 0.60 15.45

Dy
∗∗∗ y� 227634x+ 12.743 0.29 0.10 23.56

SDr
∗∗∗ y� − 438.57x+ 123.95 0.42 0.37 19.54

Dr
∗∗∗ y� − 21667x+ 126.12 0.48 0.44 18.45

SDg
∗∗∗ y� − 2696.1x+ 85.146 0.30 0.23 21.63

SDg/SDb
∗∗∗ y� 134.53x − 95.534 0.26 0.16 22.82

SDy/SDb
∗∗∗ y� 0.0089x − 0.3791 0.61 0.58 15.88

(SDr − SDy)/(SDr + SDy)∗∗∗ y� − 477.23x+ 524.05 0.63 0.60 15.53
(SDg − SDb)/(SDg + SDb)∗∗∗ y� 304.84x+ 38.803 0.28 0.19 22.25
WSI∗∗∗ y� 75.498x+ 76.016 0.73 0.70 13.41
∗∗∗Correlation is significant at the 0.999 confidence level.

Table 4: Multiple stepwise regression model implemented in SPSS.

Model R R2 Error estimation Predictor variable
1 0.853 0.73 13.13 Constant, WSI
2 0.865 0.75 12.80 Constant, WSI, SDg/SDb
3 0.877 0.77 12.41 Constant, WSI, SDg/SDb, NBNDVI
4 0.887 0.79 12.12 Constant, WSI, SDg/SDb, NBNDVI, SDg
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Figure 7: Regression model. Unitary linear regression model constructed by (a) SDy and disease severities, (b) NBNDVI and disease
severities, and (c) WSI and disease severities and (d) multiple stepwise regression model.
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selected spectral indices were able to significantly discrim-
inate wheat scab. Specifically, WSI showed the highest fitting
R2 of 0.73, followed by NBNDVI, NDVI, and SDywith fitting
R2 of 0.67, 0.66, and 0.64, respectively. It can be found that
most fitting R2 are not high. Leave-one-out cross validation
was used for the accuracy verification for the regression
results of all indices (Table 3).+e results prove that WSI has
the highest accuracy (testing R2 � 0.70; RMSE� 13.41),
which indicates it can perform well in identifying wheat scab
of different levels on the ear scale.

3.5. Multiple Stepwise Regression. Related studies have
shown that the model established by multiple variables is
better than that by single variable [34].+emultiple stepwise
regression statistical method was used to calculate the re-
lationship between spectral indices and disease severities.
Taking all the 23 spectral indices as independent variables
and the disease severity as the dependent variable, it can be
known that the final variables of the model are WSI, SDg/
SDb, NBNDVI, and SDg (Table 4). +en, the multivariate
stepwise regression equation is obtained as follows:

y � 30.627WSI − 82.765
SDg

SDb
  − 192.218NBNDVI

− 984.01SDg + 276.882.

(7)

+e multiple regression model was compared with three
unitary regression models with high fitting R2 (Figure 7). We
find that the multiple regression model produced the highest
fitting R2 of 0.79 and more even distribution. To further
validate the ability of the model constructed by WSI, SDg/
SDb, NBNDVI, and SDg to detect wheat scab disease, we
used leave-one-out cross validation; scatter plots of the
relationship between the actual severity and predicted se-
verity are shown in Figure 8. +e multiple stepwise re-
gression showed a testing R2 of 0.72 and an RMSE of 13.02,
respectively, indicating that the integrated model based on
WSI, SDg/SDb, NBNDVI, and SDg has a better inversion
effect on the severity of disease than the single variable.

4. Conclusions

+e timely monitoring of wheat scab disease is critical for
agricultural management. By analyzing the correlation be-
tween first-derivate spectra and corresponding disease se-
verity levels, two sensitive wavebands (450–488 nm and
500–540 nm) were selected. Subsequently, a new index
(WSI) was developed for detecting and monitoring wheat
scab at the ear scale. Compared with other common spectral
indices, WSI has excellent performance with the fitting R2 of
0.73, testing R2 of 0.70, and RMSE of 13.01, respectively.
Moreover, the multiple regression model is more conducive
to the identification of scab than univariate regression
models. Our study can provide the technical support for the
early diagnosis and management of wheat scab.
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