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ABSTRACT Rapid, non-destructive detection of wheat Fusarium head blight (FHB) is an important tool
for disease control. Red-edge (RE) is a prominent spectral feature for determining crop conditions with the
potential to enhance the accuracy of monitoring FHB regionally. This study explored the potential of RE for
FHB monitoring based on Sentinel-2 Multispectral Instrument (MSI) data. The novel red-edge head blight
index (REHBI) was developed to detect FHB at a regional scale. Hyperspectral data at the canopy scale
was integrated to simulate Sentinel-2 multispectral reflectance using the relative spectral response (RSR)
function of the sensor. Then, many differential and ratio combinations of Sentinel-2 bands that were sensitive
to FHB severity were selected. REHBI was established based on these basic vegetation indexes (VIs), and
the model developed from REHBI performed best in monitoring FHB severity (R2 = 0.82, RMSE = 10.1).
Additionally, the infected canopies with disease index (DI) values between 10 and 50 were classified as
slightly diseased canopies. Ordinary least square (OLS) was used to test the performance of REHBI and two
conventional VIs, i.e., OSAVI and RDVI, in monitoring slightly diseased canopies; REHBI outperformed
these alternatives (R2 = 0.69, RMSE= 3.6). To approximate real agricultural conditions, Poisson noise was
added to the simulated Sentinel-2multispectral data and generalized performance of VIswas evaluated again;
REHBI still had the highest R2 and lowest RMSE values (0.74 and 12.6, respectively). Finally, to validate
REHBI’s ability to detect FHB infection in agricultural production, it was applied to monitoring FHB in
the wheat planting areas of Changfeng and Dingyuan counties from Sentinel-2 imagery. Generally, REHBI
performed better in disease monitoring than OSAVI and RDVI. The overall accuracy was up to 78.6%, and
the kappa coefficient was 0.51. Experimental results demonstrate that REHBI can be used to monitor FHB.

INDEX TERMS Red-edge, wheat fusarium head blight, Sentinel-2, spectral analysis, disease index.

I. INTRODUCTION
Above half population in the world feed on wheat (Triticum
aestivum L.), which has extraordinary significance in ensur-
ing national food security [1]. Scab, or Fusarium head
blight (FHB), is a fungal disease resulted from Fusarium
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graminearum (Gibberella zeae). It is a major reason for the
loss of yield in winter wheat [2]. FHB is important not
only because it reduces yield, but also because it reduces
the quality and feed value of affected wheat. In addition,
Fusarium graminearum can produce mycotoxins, includ-
ing deoxynivalenol (also known as DON or vomitoxin),
which can adversely affect livestock and human health when
ingested [3]. Traditionally, FHB in wheat is monitored by
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visual inspection of fields, which is time consuming and labor
intensive, but also infeasible for thoroughly monitoring dis-
ease occurrence and severity over large areas [4]. In practice,
only portions of wheat fields are affected by FHB, and the
occurrence and spread of these areas are irregular. Therefore,
it is a challenge to accurately and effectively monitor FHB
distribution.

As an effective method in object detection over large
areas, satellite-based remote sensing technology has become
a more viable option for monitoring crop diseases [5]. Since
changes in morphology, leaf color, chlorosis and transpira-
tion rate of infected plants can be directly extracted from
radiometric measurements, crop diseases can be monitored
and identified by remote sensing [6]. Besides, satellite-based
imagery can be captured on a regular basis, and it is an
affordable and independent data source to monitor crop dis-
eases at a large scale[7].Many satellite-derivedmulti-spectral
image datasets have been used in crop disease monitor-
ing, including MODIS, HJ-CCD, Landsat 8, SPOT-6, and
PlanetScope [6]–[10]. However, most previously used data
does not contain wavebands covering red-edge (RE) spec-
tral region. RE band is located between the red absorption
maximum and high reflectance in the near infrared (NIR)
region, and it is a significant spectral characteristic of veg-
etation, where the transition from chlorophyll absorption to
cellular scattering occurs [11]. Previous studies have noted
the relevance of RE bands in estimating leaf area index, plant
chlorophyll, nitrogen content, and discriminating different
crop types based on their different leaf and canopy structures
[12]–[15]. These variables are important for determining crop
conditions, and thus give RE potential for use in crop disease
monitoring.

The swath width of Sentinel-2A satellite is 290 km, and
multi-spectral images of 13 spectral bands are provided at
various spatial resolutions [16]. Different from the common
high-medium resolution satellite data, Sentinel-2A satellite
has three RE bands (705 nm, 740 nm, 783 nm) at a 20-m
resolution. Since Sentinel-2 can perform several operational
reflectance measurements in and near the RE spectral region
while increasing the spatial resolution in short revisit time
[17], it has a great prospect in crop disease monitoring. By
combining Sentinel-2 bands 5 and 6, it is possible to better
characterize RE data at a regional scale. As a result, algo-
rithms can be further developed to detect and identify crop
diseases using Sentinel-2. For example, Inos et al. resam-
pled hyperspectral field spectra of maize using four sensor
spectral data sources—Sentinel-2, RapidEye, Quickbird and
WorldView-2. By classifying the resampled spectra using
random forest algorithm, the three categories of identified
disease severity of grey leaf spot can be represented. The
kappa value (0.76) and overall accuracy (84%) of Sentinel-
2 data analysis were the largest [18]. Liu et al. have pro-
posed a spatio-temporal anomaly detection method, which
could detect heavy metal-induced stress in rice crops using
multi-temporal Sentinel-2 satellite images; their proposed
method successfully detected rice under Cd stress, and the

coefficients of spatio-temporal variation in rice vegetation
indices were stable regardless of whether they were applied to
consecutive growth stages or to two different crop years [19].

Vegetation index (VI) is among the most discussed remote
sensing techniques and applications. VIs are simple algebraic
combination of spectral band values at multiple wavelengths
obtained by remote sensing [20]. Owing to the computational
simplicity of methods based on VIs, the potential of VIs in
disease detection has been investigated by many scholars.
For instance, Mahlein et al. detected the severity of fungal
leaf diseases of sugar using modified chlorophyll absorp-
tion integral (mCAI), anthocyanin reflectance index (ARI)
and normalized difference vegetation index (NDVI), finding
that three sugar beet diseases can be distinctively differ-
entiated using combinations of two or more spectral veg-
etation indices [21]. Hou et al. detected grapevine leafroll
disease (GLD) based on the ant colony clustering algo-
rithm (ACCA), and the spectral discrimination and spectral
differences between healthy and diseased grapevines were
enhanced by an 11-index feature vector. Finally, the classi-
fication accuracies of the four infection stages were 94.4%,
75%, 84.6%, and 83.3 %, respectively [22]. By carrying
out linear correlation analysis, logistic discriminant analysis,
and linear discriminant analysis, Sreekala et al. established
discriminant models based on VIs to monitor soybean dis-
eases rating; their discriminant models can accurately detect
more than 80% healthy plants, but the accuracy of dis-
criminating individual diseases was poor [23]. The above-
mentioned studies utilized commonly applied VIs. The nature
of host–pathogen interactions can influence physiological
and phenological diseases of crops, and the influence on
spectral signature is different [24]. Common VIs are not dis-
ease specific or disease dependent. Therefore, special indices
should be designed for every disease. Zheng et al. detected
the severity of yellow rust infection based on the red-edge
disease stress index (REDSI), and it outperformed other
commonly used VIs [16]. Hania et al. developed the spec-
tral disease index (SDI) to identify the ‘flavescence dorée’
grapevine disease, and the classification precision exceeded
90% [24]. Nevertheless, according to our literature review,
the design of a disease index for regional FHB monitoring
has received limited attention, and no study has considered
whether Sentinel-2 MSI images can be used to accurately
monitor FHB.

In this study, hyperspectral data from wheat canopies with
different severities of FHB were acquired directly in the
field. Canopy hyperspectral reflectance was simulated to the
reflectance of Sentinel-2 sensor channels using the relative
spectral response (RSR) function of the Sentinel-2 MSI sen-
sor. The main objectives of this paper were (i) to select
a sensitive differential and ratio combinations of Sentinel-
2 bands for identifying different levels of severity of FHB
infection in winter wheat; (ii) to develop a new red-edge
multispectral disease index to monitor FHB infection; and
(iii) map FHB infection using Sentinel-2 satellite imagery at
a regional scale.
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II. MATERIALS AND METHODS
A. STUDY AREA AND DATA
Two field sites were investigated in this study (Figure 1).
The canopy-scale experiments were conducted at Lujiang
county (117◦13′ 12′′E, 31◦29′ 0′′N) and Shucheng county
(116◦59′34′′E, 31◦32′24′′N), in Anhui province, China,
where the major crop is winter wheat (‘Yangmai 25,’ a sus-
ceptible wheat cultivar). These regions have a subtropical
humid continental monsoon climate with annual precipitation
of about 1000 mm, and the average annual temperature is
15◦C [25]. The surface elevations of these regions range
between 15 and 80 m [26]. The growing season for wheat
is from September to June. According to the United States
Department of Agriculture (USDA) soil taxonomy, the yel-
low brown soil in these regions is classified as alfisols [27].
According to the local agricultural management department,
FHB is a common disease in these regions.

FIGURE 1. The location and sampling sites of the canopy-scale
experiments (upper-left) and field surveys of wheat Fusarium head blight
(FHB) infection (lower-right). The green boxes show the boundaries of
experimental fields, while green and red crosses indicate locations that
were healthy and infected by FHB, respectively.

Field inspections of wheat FHB infection were carried
out in a suburban area of Hefei (117◦25′12′′E, 32◦30′4′′N),
Anhui province. With subtropical humid continental mon-
soon climate, the annual average temperature of this region
is 15.7◦C, and the annual average precipitation is 1000 mm.
About 50% of the rain occurs from June to August. The
terrain tilts from northwest to southeast, and the surface ele-
vation is in the range of 15∼ 80 m.With suitable temperature
and abundant sunshine, the region is suitable for crop growth.
The major crop is winter wheat (‘Yangmai 25,’ specifically,
a cultivar susceptible to FHB) and the major soil type in this
region is alfisols. FHB, which is sensitive to local climate
and environmental conditions, is reported to be a common
disease.

In the canopy-scale experiments, the hyperspectral data
of 53 wheat canopies were collected. On May 8, 2018,

an ASD FieldSpec Pro spectrometer (Analytical Spectral
Devices, Inc., Boulder, CO, USA) was used for the measure-
ment at the grain filling stage of wheat. The spectrometer
had the spectral range of 350∼2500 nm, with 3 nm spectral
resolution in the 350–1000 nm region and 10 nm spectral
resolution in the 1000–2500 nm region [16]. The size of
whole fieldwas 42× 115-m and the crop cultivars, cultivation
procedures, and management practices of wheat field were
uniform in this place. 53 plots were selected in this field
and each plot was around 1 × 1-m. The inner of each plot
was homogeneous and there was nearly none bare soil in the
plot. According to the field guide for ASD FieldSpec Pro
spectrometer, it is important to accurately define the field
of view of the sensor and we need to make sure that the
size of the plot we wish to measure is large relative to the
field of view of the sensor. Considering the measurement
of the reflectance spectrum of every plot will be conducted
10 times and the average was taken as the final reflectance
spectrum, a circular field of view with radius of 0.1m would
be satisfactory. Thus all canopy spectral measurements were
taken 1.3 m above the ground in a 25◦ field of view. The
changes in illumination were corrected by performing a
40 × 40-cm BaSO4 calibration panel every 10 measure-
ments. All experiments were carried out between 10:00 and
14:00 under cloudless conditions, and the changes in the
solar zenith angle was the minimum. The measurement of
the reflectance spectrum of every sample was conducted
10 times, and the average was taken as the final reflectance
spectrum. The disease index (DI) of each plot was calculated
based on the rules for monitoring and forecasting wheat head
blight suggested by the National Plant Protection Department
of China (Chinese Standard: GB/T 15796-200X). 10 indi-
vidual plants were randomly selected in every canopy to
detect the disease. All plants were classified into five classes
of disease severity according to FHB damage percentage to
wheat ears: 0% (class 0), 1–25% (class 1), 26–50% (class 2),
51–75% (class 3), 76–100% (class 4). The DI of each plot
was calculated using the formula [28]

DI =

∑
(hi × i)
H × 4

× 100, (1)

where i is the class of disease severity, hi is the wheat ear
number in each class, and H is the quantity of all selected
wheat ears. The disease status was evaluated by the continu-
ous variable DI. Moreover, subsequent analysis was carried
out by quantitatively classifying the disease severity of the
canopy into three classes. Wheat canopies with DI ≤ 10 had
nearly no symptoms, so canopies with 0 ≤ DI ≤ 10 were
labeled as healthy, canopies with 10 < DI ≤ 50 were labeled
as slightly diseased, and canopies with 50 < DI ≤ 100 were
labeled as severely diseased.

In the field inspection at the suburban area of Hefei,
28 plots were investigated in May 2017 (Figure 1). Both our
field surveys and interviews with local farmers suggested that
the changes in spectral reflectance of these plots are due to
the disease of FHB. The sampling was designed according
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to the rules for monitoring and forecasting wheat head blight
(GB/T 15796-200X). In order to match the spatial resolution
of Sentinel-2 multispectral images, the size of each plot is
20 × 20-m.. The inner of each plot was homogeneous and
five 1× 1-m ranges in each plot were investigated to guaran-
tee the uniformity of disease severity in the plot. A submeter-
precision handheld global positioning system (GPS)was used
to record the central longitude and latitude of every plot.
These plots were categorized into two distinct classes: healthy
samples and FHB-infected samples.

B. DATA PREPROCESSING
Based on RSR function of the sensor, the hyperspectral data
of 53 wheat canopies was integrated for the simulation of
the multispectral reflectance of Sentinel-2 using the follow-
ing equation, so that the potential of Sentinel-2 images for
monitoring and detecting wheat FHB monitoring can be
evaluated

Rsentinel−2 =
∫ λend

λstart

f (x)dx, (2)

where λstart and λend are the beginning reflectance wave-
length and ending reflectance wavelength of the correspond-
ing Sentinel-2 channel, Rsentinel−2 denotes the simulated
reflectance of the multispectral channel of the Sentinel-2
sensor. f (x) represents RSR function of the Sentinel-2 sensor.

Actual Sentinel-2 multispectral images were obtained
from https://scihub.copernicus.eu/. The Sen2cor atmospheric
correction toolbox was used to conduct an atmospheric
correction for these images in Sentinel Application Plat-
form (SNAP) to remove the effects of the atmosphere on the
reflectance values of images [29].

C. USING BASIC VEGETATION INDICES FOR FUSARIUM
HEAD BLIGHT DETECTION
When the integration processing of hyperspectral data was
finished, two basic vegetation indices, i.e., difference vegeta-
tion index (DVI) [30] and ratio vegetation index (RVI) [31],
and many modifications of these two indices were calculated.
These indices were examined and compared for the detection
of FHB using ordinary least squares (OLS). Since we did
not have enough samples to partition it into training and
test datasets, the leave-one-out cross validation was used to
evaluate the generalization performance of models developed
from these indices. A correlation analysis was performed
between the estimated DI and measured DI. The following
equation was used to calculate the root mean square error
(RMSE).

RMSE =

√∑n
i=1

(
yest,i − yobs,i

)2
n

, (3)

where n is the sample size, yest is the estimated DI, and yobs
is the observed DI.

FIGURE 2. The root mean square error (RMSE) and the correlation
coefficients (R2) of models developed using the basic vegetation indices
and modified vegetation indices. B, G, R, RE1, RE2, RE3 and NIR are
spectral reflectance of blue band, green band, red band, red-edge 1 band,
red-edge 2 band, red-edge 3 band and near infrared (NIR) band.

According to the analysis (Figure 2), NIR-R and RE3-R
were the most sensitive indices for identifying FHB severity.
R, RE3 and NIR are spectral reflectance of red band, red-
edge 3 band and near infrared band respectively. In this
study, the red-edge head blight index (REHBI) was proposed
based on this analysis, and it was the area covered by a
triangle in the spectral reflectance space based on the red, red-
edge 3, and NIR reflectance values (Figure 3). REHBI was
formulated as

REHBI

=
(842−665)×(RRe3 − RR)−(783−665)×(RNIR−RR)

2
,

(4)

where the RR, RRe3, and RNIR are the red, red-edge 3, and NIR
reflectance values. 665, 783 and 842 are central wavelength
of the red band, red-edge 3 band, and NIR band, respectively.

FIGURE 3. A general overview of triangular areas consisting of the red,
red-edge 3, and near infrared (NIR) reflectance values for healthy and
diseased wheat canopies.
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When wheat ears are infected by FHB, the resulting chloro-
phyll destruction and wheat ear tissue decreases can increase
red reflectance and decrease red-edge 3 and NIR reflectance,
thus decreasing the total area of the triangle.

D. USING MULTISPECTRAL VEGETATION INDICES
FOR FUSARIUM HEAD BLIGHT DETECTION
According to the literature review, crop diseases have been
monitored and detected using many VIs [24], [32]–[36].
In this study, apart from REHBI, we also selected fourteen
VIs that are widely applied to monitoring disease outbreaks
to assess the severity of wheat FHB. These indices were
also examined and compared for detecting FHB using OLS,
the leave-one-out cross validation was also used to evaluate
the generalization performance of models, and the resulted
R2 and RMSE of models developed using these vegeta-
tion indices were also calculated. Table 1 contains detailed
descriptions of these VIs.

III. RESULTS
A. SPECTRAL CHARACTERISTICS OF DISEASED
CANOPIES
Figure 4a indicates that healthy samples, slightly infected
samples and severely infected samples are significantly dif-
ferent in the average canopy spectral reflectance. The spec-
tral curve of healthy samples exhibits high reflectance in
the NIR region and ‘‘green peak’’ and ‘‘red valley’’ in the
visible (VIS) region, which conforms to the reflectivity of
green vegetation. Similar to healthy samples in the red region,
samples slightly infected with FHB have spectral reflectance
characteristics, and the reflectance are decreased in the green
and near infrared regions. Comparedwith healthy and slightly
infected samples, the samples severely infected with FHB
have lower reflectance in the near infrared region but higher
reflectance in the red region.

The average canopy reflectance of slightly and severely
diseased samples and healthy samples in the simulated
Sentinel-2 multispectral data is shown in Figure 4b. The
reflectance of healthy samples is higher at Re2, Re3, and
NIR, while infected samples have decreases at these bands,

FIGURE 4. Average hyperspectral reflectance (a) and simulated
Sentinel-2 multispectral reflectance (b) of healthy (green) and slightly
(purple) and severely (red) diseased wheat canopies. Labels in x-axis of
chart are central wavelength of the blue band, green band, red band,
red-edge 1 band, red-edge 2 band, red-edge 3 band, and NIR band,
respectively.

TABLE 1. Characteristics of vegetation indexes (VIS) used to monitor
diseases.

and the decreases are directly proportional to FHB infection
severity. All three kinds of samples have similar reflectance at
green and Re1, while severely infected samples have higher
reflectance than other samples at red. As shown in Figure 4a,
the pattern of the reflectance of the simulated multispectral
data in the NIR and visible regions is similar to that of the
hyperspectral data.

B. ESTIMATION OF FHB SEVERITY USING SIMULATED
MULTISPECTRAL DATA
Table 2 summarizes the R2 and RMSE values of models
developed from REHBI and fourteen commonly used VIs.
In general, REHBI performed best among these VIs with R2

and RMSE values of 0.82 and 10.1, respectively. R2 values of
conventional VIs ranged from 0.29 to 0.77. RDVI performed
best among conventional VIs (R2 = 0.77), followed by
OSAVI (R2 = 0.74). GNDVI performedworse than other VIs
(R2 = 0.29). Among red-edge VIs, R2 ranged from 0.21 to
0.53. PSRI1 performed best among these VIs (R2 = 0.53),
followed by NREDI1 (R2 of 0.46), while NREDI3 performed
worst (R2 = 0.21). As for the average R2 and average RMSE,
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TABLE 2. R2 and RMSE of models developed from REHBI and fourteen
commonly used vegetation indexes (VIS).

the models developed from conventional VIs performed bet-
ter than those models developed from red-edge VIs.

When the symptoms are completely exhibited, the obser-
vation of FHB is too late for preventative measurement.
Therefore, it is important to detect FHB in crops that are
only slightly diseased. In this study, canopies were quanti-
tatively classified, and canopies with intermediate DI values
(i.e., 10 < DI ≤ 50) were labeled as slightly diseased.
OLS was also used to test the performance of REHBI,
OSAVI, and RDVI in monitoring slightly diseased canopies.
Figure 5 demonstrates that the scatter plots of the estimated
DIs and the measured DIs help to visually evaluate the per-
formance of various models using VIs. In general, REHBI
performed better than OSAVI and RDVI (R2 = 0.69,
RMSE = 3.6 versus R2 = 0.34, RMSE= 5.2 and R2 = 0.58,
RMSE = 4.2, respectively), indicating that REHBI was able
to accurately identify slightly diseased fields, while OSAVI
performed worst among these three VIs.

C. ESTIMATION OF FHB SEVERITY USING NOISY
SIMULATED MULTISPECTRAL DATA
In practice, lossy compression of remote sensing images
can be influenced by noise of sensors during image captur-
ing [46]. Poisson or signal-dependent (Poisson-like) noise
is most frequently observed in remote sensing data and can

FIGURE 5. Scatter plots of models developed from REHBI, OSAVI, and
RDVI for slightly diseased canopies.

TABLE 3. R2 and RMSE of models developed from REHBI and fourteen
commonly used VIS with and without noise.

corrupt remote sensing images since it is associated with
the particle nature of light [47]. To approach real-world
conditions, Poisson noise was added to the hyperspectral
data, and the multispectral reflectance of Sentinel-2 data
was simulated again. The monitoring models were also
developed based on OLS and the leave-one-out cross val-
idation was also used to evaluate the generalization per-
formance. In general, when using noisy data, REHBI still
performed best among these VIs (R2

= 0.74, RMSE= 12.6).
R2 values of conventional VIs ranged from 0.06 to 0.69,
and RMSE ranged from 13.4 to 23.4. RDVI performed
best among conventional VIs (R2

= 0.69), followed by
OSAVI (R2

= 0.61). while VARIgreen performed worst
(R2

= 0.06). Among red-edge VIs, R2 ranged from
0.04 to 0.28. NREDI2 performed best among these VIs
(R2
= 0.28), followed by NREDI1 (R2

= 0.26), while
PSRI1 performed worst (R2

= 0.04). In terms of the average
R2 and RMSE values, the models developed from conven-
tional VIs performed better than those models developed
from red-edge VIs. Based on the performance of all VIs
before and after adding Poisson noise, all VIs had higher
RMSE values and lower R2 values when using noisy data.
This indicates that the difference between DIs predicted by
models and the DIs measured became larger after adding
Poisson noise.

D. MAPPING DISEASES AT REGIONAL
SCALES USING REHBI
The ability of REHBI to detect FHB infection in practice
is validated in this study. Potential FHB infection in the
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wheat planting areas of Changfeng and Dingyuan counties
was monitored by applying REHBI to Sentinel-2 imagery.
The temporal dynamics of FHB are primarily influenced by
temperature and humidity. Thus, the average land surface
temperature (LST) and precipitation from April to May were
recorded as environmental features using Climate Hazards
Group Infrared Precipitation with Station data (CHIRPS) and
MOD11A1. In this study, the support vector machine (SVM)
with radial basis function kernel was applied to establish
a discrimination model and 28 plots investigated in field
inspection at the suburban area of Hefei were used to train and
validate the model. The value of regularization parameter and
Gaussian width were set as 100 and 1.2 respectively. REHBI,
OSAVI, and RDVI were combined with average LST and
precipitation from April to May respectively as SVM inputs,
and the leave-one-out cross validation was used to extract
the confusion matrix to evaluate the generalization perfor-
mance of models. Specifically, before training the model,
a sample was taken from all samples. Then, based on the rest
samples, models were trained using three training datasets: a
dataset consisting values of REHBI, average LST and average
precipitation of rest samples; a dataset consisting values of
OSAVI, average LST and average precipitation of rest sam-
ples; a dataset consisting values of RDVI, average LST and
average precipitation of rest samples. After the models had
been trained, the values of REHBI, OSAVI, RDVI, average
LST and average precipitation of the sample taken from all
samples at first were used to predict the label of this sample
through the trained models. These steps were iterated until
the labels of all samples have been predicted. The confusion
matrix was extracted based on the predicted labels and true
labels of all samples. The infection map of FHB produced
using REHBI, average LST and average precipitation was
showed in Figure 6. The performances of REHBI, OSAVI,
and RDVI in FHB monitoring are shown in Table 4. OSAVI
and RDVI had the same accuracy indices for disease classi-
fication, indicating that OSAVI and RDVI are similarly able
to monitor FHB. However, REHBI outperformed OSAVI and
RDVI in disease monitoring.

IV. DISCUSSION
Our analyses were able to discriminate among slightly
and severely FHB-infected wheat crops and healthy wheat
crops based on their significant differences in average
canopy spectral reflectance. Figure 4a demonstrates that the
samples slightly infected with FHB had similar spectral
reflectance properties with healthy samples in red regions,
while the spectral reflectance decreased slightly in green
region regions. This appears to be caused by or associated
with FHB. During favorable weather, salmon-orange to pink
spores occur at the base of infected kernels of the fungus
[48]. Adjacent kernels are infected by the spores. When DI
≤ 50, the damaged area of wheat kernels is always small,
with most parts of each wheat kernel still having chlorophyll
a, chlorophyll b, and carotenoids. Thus, healthy samples
and slightly infected samples have similar average canopy

FIGURE 6. The infection map of Fusarium head blight (FHB) in the wheat
planting areas of Changfeng and Dingyuan counties produced by the
REHBI-based model. Red represents estimated infected wheat, and green
represents estimated healthy wheat.

TABLE 4. Overall verification results of models developed from REHBI,
OSAVI, and RDVI.

spectral reflectance in the VIS region. When DI > 50, most
parts of wheat kernels are infected, and these infected kernels
are wrinkled, shrunken, and light [49]. Chlorophyll content
degradation and pronounced water loss lead to pronounced
variation in spectral properties of infected grains and whole
ears, causing the observed significant difference in aver-
age canopy spectral reflectance between severely infected
samples and healthy samples in NIR and VIS regions.
As shown in Figure 4b, it is obvious that simulated multi-
spectral data and hyperspectral data exhibit similar patterns.
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Healthy samples and severely infected samples at Red,
Re2, Re3, and NIR are significantly different in spectral
reflectance, while the spectral reflectance of each sample
type is similar at Re1. The central wavelength of Re1 is
705 nm and the band width is 15 nm, i.e., the boundary of
the region where reflectance is dominated by pigments and
at the beginning portion of the rising slope in NIR caused
by structural characteristics [11]. Therefore, a transition from
the dominant effect of pigment absorption on NIR vegetative
characteristics (i.e., scattering) occurs in this region. This
may explain the similar reflectance of healthy samples and
severely infected samples in Re1.

Table 2 shows the R2 and RMSE values of models devel-
oped from REHBI and fourteen commonly used VIs. The
model developed from RDVI performed best among con-
ventional VIs, followed by OSAVI; a model developed from
NDVI yielded lower accuracy. RDVI and OSAVI were both
established to improve the sensitivity of NDVI to soil back-
grounds [20]. The good performances of these indices indi-
cated that even if FHB occurred at the flowering stage (Feekes
10.5) through to the milk-ripening stage (Feekes 11.1) [50],
soil background still had an effect on the canopy spectral
reflectance. The red-edge VIs, i.e., NREDI1, NREDI2, and
NREDI3, were modifications of NDVI with red-edge1, red-
edge2, and red-edge3, respectively, and the R2 of models
developed from these indices were 0.46, 0.42, and 0.21
respectively. The poor performances of these indices indi-
cated that only using red-edge bands of sentinel-2 is insuf-
ficient for FHB monitoring. REHBI was developed from
NIR-R and RE3-R, which have been proven to be sensitive
to FHB severity. REHBI was defined as the area covered
by a triangle in spectral reflectance space based on the
reflectance of red, red-edge 3, and NIR regions. Therefore,
information in the VIS, red-edge, and NIR regions were
used. It achieved high monitoring accuracy, and the good
performance of REHBI demonstrated the possibility of estab-
lishing disease monitoring indices based on basic VIs that are
sensitive to disease severity. Figure 5 shows the performance
of REHBI, OSAVI, and RDVI in identifying slightly and seri-
ously diseased canopies. In general, REHBI performed better
in monitoring slightly diseased canopies than other indices.
As OSAVI and RDVI do not contain red-edge bands in their
formulae, it is possible that red-edge bands provide important
information for identifying slightly diseased canopies.

Poisson noise was added to the simulated multispectral
data, and the performances of models developed fromREHBI
and fourteen commonly used VIs are shown in Table 3.
As seen in the results of simulated multispectral data without
Poisson noise, REHBI had slight variation in R2 and RMSE
values when noisy data was used, indicating that it has good
resistance to Poisson noise. RDVI still performed best among
conventional VIs (R2 = 0.69, RMSE = 13.4). Regard-
ing the red-edge VIs, the R2 values of NREDI1, NREDI2,
and NREDI3 were 0.26, 0.28, and 0.1, respectively, indicat-
ing that the combination of red-edge1 and red-edge3 could
provide more information in monitoring the severity of

diseased canopies. REHBI still performed best among all VIs
(R2 = 0.74, RMSE = 12.6). Thus, REHBI demonstrates
high accuracy inmonitoring the severity of diseased canopies,
even when multispectral data contains Poisson noise.

In addition to the analysis of simulated Sentinel-2 data,
FHB infection in wheat growing areas was monitored
by applying REHBI, OSAVI, and RDVI to real Sentinel-
2 imagery. The model developed based on REHBI was used
to obtain the spatial distribution of FHB-infected and healthy
winter wheat, as shown in Figure 6. In general, the wheat crop
field of the study area was isolated, and the northwest part had
more infected areas and a higher intensity of FHB infection
compared to other regions, consistent with our field obser-
vations. The classification accuracy of the mapping results
verified by direct field observation is shown in the confusion
matrix in Table 4. The omission error and commission error
of each class can be reflected by the producer’s accuracy
and the user’s accuracy of diseased and healthy classes [51].
For the healthy class, REHBI produced a high producer’s
accuracy of 84%, while the user’s accuracy also was 84%,
indicating that REHBI was able to accurately identify healthy
samples. OSAVI and RDVI both had a lower producer’s accu-
racy of 74% and higher user’s accuracy of 89%, indicating
that they tended to misclassify diseased samples as healthy
samples. For the diseased class, REHBI had higher user’s
accuracy and producer’s accuracy than OSAVI and RDVI.
Notably, the producer’s accuracy of REHBI was 67%, while
producer’s accuracy of bothOSAVI andRDVIwas 33%, indi-
cating that OSAVI and RDVI could not be used to accurately
identify diseased samples. Consequently, REHBI demon-
strated its superior ability to identify FHB at a regional scale.

There are still some challenges and limitations in
monitoring FHB with REHBI at a regional scale. First,
the hyperspectral data and field samples were acquired at the
milk-ripening stage (Feekes 11.1). Therefore, it is unclear
whether REHBI will perform well at other stages during
FHB infection. Second, for the hyperspectral wheat canopy
data used in the present study, the crop cultivars, cultivation
procedures, and management practices of wheat field were
uniform. In practice, these factors generally differ among
the areas cultivated by individual smallholder farmers, so the
diversity of these factors among cultivated areas should be
considered to establish a more robust disease index for FHB
monitoring. Third, although the monitoring method for sim-
ulated data and satellite borne data is different, it will be
very interesting and meaningful to compare the accuracies
of simulated data in relation to those of satellite borne data.
Feature studies could analysis the difference of simulated
data and satellite borne data, and compare the performance of
these two kind of data. In addition, given the features they can
sometimes share with FHB, confusion and uncertainties in
disease monitoring can be caused by soil type, phenological
different and some other environmental variables. In future
research, the above factors should receive more attention
in order to develop an even more robust and reliable FHB
monitoring method at a regional scale.
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V. CONCLUSION
Monitoring wheat FHB at a regional level plays an important
role in agricultural management. This study proposed a new
disease index, REHBI, to be used for monitoring wheat FHB.
In the laboratory study, the simulated Sentinel-2multispectral
data were acquired from field canopy hyperspectral data. The
basic VIs that were sensitive to the severity of disease were
extracted from the dataset, and a disease index, i.e., REHBI,
which was defined as the area covered by a triangle in
spectral reflectance space based on the red, red-edge 3, and
NIR reflectance values, was developed. The performance of
REHBI was compared to those of some conventional VIs and
red-edge VIs. All VIs showed different traits when monitor-
ing the severity of wheat FHB, but REHBI performed the
best among all VIs. The result showed that the REHBI tool
proposed in this study can generate a reasonable wheat FHB
damage map, and the overall accuracy is up to 78.6%. Thus,
the REHBI could be used to monitor wheat FHB at a regional
scale. Future studies should determine the breadth of situa-
tions in which this approach can be used, by, for example,
evaluating the performance of REHBI when field samples
are acquired at different times in the growing season. Further,
consideration of more variables (e.g., soil type, cultivars) may
improve the robustness and reliability of inferences made
using this disease index.
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