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Vegetation Indices Combining the Red and Red-Edge
Spectral Information for Leaf Area Index Retrieval
Qiaoyun Xie , Jadu Dash, Wenjiang Huang , Dailiang Peng , Qiming Qin, Hugh Mortimer, Raffaele Casa,

Stefano Pignatti, Giovanni Laneve , Simone Pascucci, Yingying Dong, and Huichun Ye

Abstract—Leaf area index (LAI) is a crucial biophysical vari-
able for agroecosystems monitoring. Conventional vegetation in-
dices (VIs) based on red and near infrared regions of the electro-
magnetic spectrum, such as the normalized difference vegetation
index (NDVI), are commonly used to estimate the LAI. However,
these indices commonly saturate at moderate-to-dense canopies
(e.g., NDVI saturates when LAI exceeds three). Modified VIs have
then been proposed to replace the typical red/green spectral region
with the red-edge spectral region. One significant and often ignored
aspect of this modification is that the reflectance in the red-edge
spectral region is comparatively sensitive to chlorophyll content
which is highly variable between different crops and different phe-
nological states. In this study, three improved indices are proposed
combining reflectance both in the red and red-edge spectral regions
into the NDVI, the modified simple ratio index (MSR), and the
green chlorophyll index (CIgreen) formula. These improved indices
are termed NDVIred& RE (red and red-edge NDVI), MSRred& RE (red
and red-edge MSR index), and CIred& RE (red and red-edge CI). The
indices were tested using RapidEye images and in-situ data from
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campaigns at Maccarese Farm (Central Rome, Italy), in which
four crop types at four different growth stages were measured. We
investigated the predictive power of nine VIs for crop LAI esti-
mation, including NDVI, MSR, and CIgreen; the red-edge modified
indices: NDVIRed-edge, MSRRed-edge, and CIRed-edge (generally repre-
sented by VIRed-edge); and the newly improved indices: NDVIred& RE,
MSRred& RE, and CIred& RE (generally represented by VIred& RE). The
results show that VIred& RE improves the coefficient of determina-
tion (R2) for LAI estimation by 10% in comparison to VIRed-edge.
The newly improved indices prove to be the powerful alterna-
tives for the LAI estimation of crops with wide chlorophyll range,
and may provide valuable information for satellites equipped with
red-edge channels (such as Sentinel-2) when applied to precision
agriculture.

Index Terms—Precision agriculture, remote sensing, RapidEye,
vegetation index (VI).

I. INTRODUCTION

THE explicit quantification of vegetation biophysical
variables on large spatial scales is an important aspect

in agricultural management and monitoring [1]. For instance,
knowledge of the spatial distribution of leaf area index (LAI)
and chlorophyll content can be used to improve the use of
resources, such as fertilizer and water [2], leading to better
yields and reduced costs [3]–[6]. Remotely sensed data from
satellites and airborne sensors has great potential to provide
information on vegetation biophysical variables over large spa-
tial and temporal scales. LAI, defined as one half the total leaf
area per unit ground surface area [7], [8], is a biophysical key
variable for estimating foliage cover and biomass production.
The LAI can, therefore, be used to monitor and forecast crop
growth and yield [1], [9], [10]. The LAI retrieval techniques
from remote sensing data can be classified into three groups:

1) empirical retrieval methods, which typically relate the bio-
physical parameter of interest to spectral data [11], [12];

2) physical retrieval methods, which refers to inversion of
radiative transfer models (RTM) from remote sensing ob-
servations [13];

3) hybrid methods, which aims to balance the strengths and
weaknesses of empirical- and physical-based methods,
e.g., through a machine learning approach [14].

Amongst the three groups, the empirical retrieval methods
typically use vegetation indices (VIs) due to their simplicity,
computational efficiency, and well-understood underlying
mechanisms. The normalized difference vegetation index
(NDVI) [15] is a widely used VI to estimate vegetation
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Fig. 1. Location of the field test sites at Maccarese Farm, Rome, Italy. The locations of the field plots where nondestructive LAI measurements took place are
also shown. The highlighted image is a false color composite image from RapidEye collected on 18 March, 2015.

biophysical variables, relying on chlorophyll absorption in
the red spectral region, creating low reflectance, and high
reflectance in the near infrared (NIR) spectral region due to
the scattering of light from the intercellular volume of leaf
mesophyll. Nevertheless, one unavoidable limitation of NDVI
is that the relationship between NDVI and LAI approaches
saturation asymptotically under the condition of moderate-to-
dense canopy (e.g., LAI > 3) due to the inherent drawback of
NDVI [16].

The red-edge region is defined as the spectral region between
680 and 750 nm where there is a sharp change in the vege-
tation reflectance [17]. This occurs due to the transition from
chlorophyll absorption in the red region to cellular scattering in
the NIR [18], [19]. The promise and potential of the red-edge
spectral region for vegetation biophysical variable retrieval has
motivated the design and also the launch of spaceborne imaging
sensors involving red-edge bands, including hyperspectral satel-
lites such as Hyperion, The Hyperspectral Imager for the Coastal
Ocean, and The Compact High Resolution Imaging Spectrome-
ter (CHRIS), and multispectral satellites such as MERIS, Rapid-
Eye, and recently, Sentinel-2 [19]. It has been demonstrated that
in the red-edge spectral region the shape of the reflectance spec-
tra is strongly influenced by LAI [20], [21]. The shift of red-edge
position toward longer wavelengths is caused by an increase in
leaf chlorophyll content [22]. Many studies have revealed that,
within red and red-edge region, chlorophyll content and LAI
contribute the most to PROSAIL simulated canopy reflectance
[23], [24]. However, the effects of chlorophyll change on LAI
retrieval are rarely discussed in studies using VIs based on
red-edge reflectance for LAI estimation. To note that, in those

studies, the red-edge modified indices improve the LAI esti-
mation when the indices are applied to crops with consistent
chlorophyll content, e.g., datasets consisting of one type of crop
at one growth stage [19], [25]. Therefore, how chlorophyll con-
tent affects spectral reflectance and LAI when chlorophyll con-
tent and LAI vary simultaneously needs to be analyzed, e.g.,
datasets with multicrop species and across multigrowth stages.
As such, the aims of this study are:

1) to analyze how variation in chlorophyll content and LAI
contributes to red, red-edge, and NIR reflectance variabil-
ity; and

2) to apply three improved spectral indices for LAI estima-
tion, and evaluate their advantages over other existing VIs.

II. EXPERIMENTAL AND VALIDATION DATA COLLECTION

A. Test Site Description and LAI Measurements

Ground LAI measurements were carried out in situ at the
Maccarese farm (41°52′N, 12°13′E, alt. 8 m a.s.l.) near Rome,
Central Italy (see Fig. 1) in 2015 growing season. The site is
within a plain coastal agricultural area comprising four dominant
crops: winter wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), alfalfa (Medicago sativa L.), and maize (Zea mays
L.) (see Table I). Winter wheat was measured on 3 March,
20 March, and 7 May, from its tillering stage to heading stage
[26]; barley was measured on 3 March, 20 March, and 7 May,
from its tillering stage to earning stage [27]; alfalfa was mea-
sured on 7 May, during its budding stage [28]; and maize was
measured on 7 July, during its jointing stage [29]. The soil
is Cutanic Luvisol, with a prevailing sandy clay loam texture,
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TABLE I
FIELD MEASUREMENTS AND CORRESPONDING SATELLITE DATA OBTAINED

Data Time

Field
measurements

March 3
(winter wheat,
barley)

March 20
(winter wheat,
barley)

May 7 (winter
wheat, barley,
alfalfa)

July 7
(maize)

RapidEye
images

February 28 March 18 May 11 July 5

becoming more clayey toward the north-east of the site. The
climate is temperate Mediterranean with dry summers and wet
autumns, with a yearly average temperature of 15.5 °C and an-
nual rainfall of 734 mm. LAI Measurements were performed
using an LAI-2200 Plant Canopy Analyzer (Li-Cor Biosciences
Inc., Lincoln, NE, USA), at 66 points each covering 1 m2. To
note that LAI measurements taken by LAI-2200 are “effective
LAI” [30].

Due to the difficulties in collecting a large number of data
in diffuse sunlight conditions, i.e., at sunset or dawn, which
are considered optimal for LAI-2200 measurements, data were
acquired during daytime in bright sunny days, within a maxi-
mum of four days since a satellite acquisition. A 45° view cap
was employed and the operator shaded the sensor from direct
radiation. The sequence suggested by the manufacturer for di-
rect radiation scattering correction was followed and a postpro-
cessing correction was subsequently applied, using the FV2200
software (LI-COR Biosciences), as detailed in the equipment
manual. Each LAI measurement was obtained, collecting ten
readings from below the canopy, from an area of about 10 m2 of
which the centre coordinates were recorded using a GPS with
differential correction (accuracy in the order of 1–2 m).

B. Satellite Data Acquisition and Processing

Multispectral remote sensing images from the RapidEye sen-
sor were obtained on 28 February, 18 March, 11 May, and
5 July 2015, corresponding to field measurements on 3 March,
20 March, 7 May, and 7 July (see Table I). This constellation of
five identical EO satellites record radiance in five broad bands:
blue (440–510 nm), green (520–590 nm), red (630–685 nm),
red-edge (690–730 nm), and NIR (760–850 nm), at a spatial
resolution of 5 m.

The RapidEye images were delivered as level 3A Ortho Prod-
uct, which offer the highest processing level with respect to ra-
diometric, sensor, and geometric corrections. This means that
the digital numbers of the image pixels represent calibrated ra-
diance values. A subsequent atmospheric correction was per-
formed on the RapidEye images by using the ENVI’s Fast
Line-of-Sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) module, which is based on the RTM MODTRAN4
[31]. In this study, model parameters of a mid-latitude summer
atmosphere and rural aerosols, as well as automatic aerosol re-
trieval, were used in FLAASH to correct the RapidEye images.
The output of FLAASH assumed reflectance values rescaled to
normal range of 0 to 1.

TABLE II
PARAMETERS USED IN SIMULATING REFLECTANCE WITH PROSAIL MODEL

Parameter Value Units Notes

Leaf parameters

N 1.5 – Leaf thickness parameters
Cw 0.01 g/cm2 Equivalent water thickness
Cm 0.004 g/cm2 Dry matter content
Cab 10∼100, step: 5 μg/cm2 Cab

Canopy parameters

LAI 1∼9, step: 0.5 – LAI
LAD Spherical – Leaf angle distribution
θs 30 degree Solar zenith angle
θv 0 degree View zenith angle
φ 0 degree View azimuth angle

C. Reflectance Simulation With PROSPECT Model

In order to analyze how variation in chlorophyll a + b con-
tent (Cab) and LAI contributes to canopy spectral reflectance,
the combined leaf (PROSPECT) and canopy (SAIL) reflectance
model PROSAIL was used for a sensitivity analysis of the spec-
tral VIs. To investigate the effect of Cab and LAI on canopy spec-
tral reflectance, chlorophyll content values were set to change
from 10 to 100 μg/cm2 with a step of 5 μg/cm2, and LAI values
were set to change from 1 to 9 with a step of 0.5. The values of
Cab and LAI cover their plausible range, respectively, based on
our history field campaign data regarding the crop types inves-
tigated in this study. Equivalent water thickness (Cw) was fixed
to a value of 0.01, because the absorption of leaf water does not
influence significantly the canopy reflectance within the spectral
range used in this study (<0.9 μm) [32]. Other input variables
were assigned with fixed reasonable values based on field mea-
surements and previous studies [33], [34] (see Table II).

III. METHODS

A. Quantifying Sources of Variation in Simulated Reflectance
Data

A model sensitivity analysis was implemented to identify the
significance of the LAI and chlorophyll content in explaining
variance in the PROSAIL model output reflectance. The Ex-
tended Fourier Amplitude Sensitivity Test (EFAST) method was
used [35], which is an extension of the classical Fourier Ampli-
tude Sensitivity Test (FAST). The EFAST approach is a para-
metric transformation that enables reducing multidimensional
integrals over the space of the input factors to one-dimensional
quadratures, through a search curve that scans the whole input
space. This approach allows the definition of a set of simulations
in which all input parameters vary simultaneously. A Fourier
decomposition is then conducted to obtain the fractional contri-
bution of each input factor to the variance of the model output
[36]. EFAST provides two sets of indices: first-order indices
(FOI) and total-order indices (TOI). The FOI give the additive
effect of each input factor; while the TOI are overall measures
of importance, accounting for the effects of the interactions of
each factor with others.
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TABLE III
DESCRIPTIONS AND FORMULAS OF VIS INVESTIGATED IN THIS STUDY

Index Description Formula Reference

Existing indices

NDVI NDVI ρN IR −ρ r e d
ρN IR + ρ r e d

[15]

NDVIRed-edge Red-edge NDVI ρN IR −ρR E
ρN IR + ρR E

[41]

MSR MSR index ρN IR/ρ r e d −1√
ρN IR/ρ r e d +1

[38]

MSRRed-edge Red-edge MSR index ρN IR/ρR E −1√
ρN IR/ρR E +1

[34]

CIgreen Green CI ρN IR
ρg r e e n

− 1 [42]

CIRed-edge Red-edge CI ρN IR
ρR E

− 1 [43]

Improved indices

NDVIred& RE Red and red-edge NDVI ρN IR −(a ∗ρ r e d + (1−a )∗ρR E )
ρN IR + (a ∗ρ r e d + (1−a )∗ρR E ) –

MSRred& RE Red and red-edge MSR index ρN IR / (a ∗ρ r e d + (1−a )∗ρR E )−1√
ρN IR / (a ∗ρ r e d + (1−a )∗ρR E )+1

–

CIred& RE Red and red-edge modified CI ρN IR
a ∗ρ r e d + (1−a )∗ρR E

− 1 –

∗NIR refers to near infrared; RE refers to red-edge; a � [0, 1]

Simulated spectral reflectance was analyzed to understand the
effect of chlorophyll content on relationships between the LAI
and the red, red-edge, and NIR reflectance. In order to quantify
the effect of chlorophyll content on spectral indices, ΔRED,
ΔRE, and ΔNIR were formed as indicators to quantify the
change of red, red-edge, and NIR bands against NIR spectral
band under two different chlorophyll contents

ΔRED =
∣
∣
∣
∣

ρRED1 − ρRED2

ρNIR2
× 100%

∣
∣
∣
∣

(1)

ΔRE =
∣
∣
∣
∣

ρRE1 − ρRE2

ρNIR2
× 100%

∣
∣
∣
∣

(2)

ΔNIR =
∣
∣
∣
∣

ρNIR1 − ρNIR2

ρNIR2
× 100%

∣
∣
∣
∣

(3)

where ρRED1 , ρRE1 , and ρNIR1 are the spectral reflectance
at red, red-edge, and NIR regions, respectively, under the
one chlorophyll content, while ρRED2 , ρRE2 , and ρNIR2 are
the spectral reflectance under the other chlorophyll content.
To set up the EFAST sensitivity analysis and to compute
ΔRED, ΔRE, and ΔNIR, the PROSAIL simulated spectral
reflectance was spectrally resampled to the spectral response
functions of RapidEye. (The spectral response functions
of RapidEye were obtained from the RapidEye Science
Archive website: https://resa.blackbridge.com/files/2014-
06/Spectral_Response_Curves.pdf.)

B. Existing and Improved VIs

Canopy spectral reflectance data derived from RapidEye were
used to calculate the VIs (see Table III) for subsequent LAI es-
timation. The existing tested VIs include three red/green re-
flectance based indices: NDVI, modified simple ratio index
(MSR), and green chlorophyll index (CIgreen). NDVI is widely
accepted as a benchmark for comparing alternative inversion

algorithms; it highlights the striking contrast between the NIR
and red spectral reflectance [37]. MSR was proposed to suppress
the saturation problem of NDVI [38]. CIgreen shows a close re-
lation to both chlorophyll content and LAI [39].

Additionally, three red-edge modified indices were tested,
with red/green reflectance replaced with red-edge reflectance:
NDVIRed-edge (red-edge NDVI), MSRRed-edge (red-edge MSR
index), and CIRed-edge (red-edge CI). The red-edge modified
indices (NDVIRed-edge, MSRRed-edge, and CIRed-edge) have been
shown to improve the LAI estimation compared to the red/green
reflectance based indices, because the red-edge channel is
sensitive to small changes in the canopy, gap fraction, and
senescence [40].

In this study, we established three newly improved VIs com-
bining red and red-edge spectral information: NDVIred&RE (red
and red-edge NDVI), MSRred&RE (red and red-edge MSR in-
dex), and CIred&RE (red and red-edge CI), in which a certain
proportion of the red and the red-edge reflectance was used to
replace the red/green reflectance in the formula of NDVI, MSR,
and CIgreen. Following the principles of the original indices
(NDVI, MSR, and CIgreen), the improved VIs (NDVIred&RE,
MSRred&RE, and CIred&RE) still utilize the strong contrast be-
tween the red and NIR reflectance sensitive to LAI. Further-
more, combining red and red-edge spectral information is a
compensation strategy that neither puts heavy emphasis on the
red reflectance, which will help to avoid saturation, nor puts
heavy emphasis on the red-edge reflectance, which will help to
avoid interruption from the change of chlorophyll content [24].
The definitions and formulas of the improved indices as well as
six existing indices tested in this study are shown in Table III.

C. Noise Equivalent (NE) ΔLAI

The NE ΔLAI was used to test the sensitivity of the differ-
ent spectral VIs against LAI changes. The NE ΔLAI has been
proved to be advantageous over the direct comparison between
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TABLE IV
FIRST-ORDER AND TOTAL-ORDER SENSITIVITY INDICES FOR THE STUDY OF

HOW VARIATION IN CAB AND LAICONTRIBUTES TO RED, RED-EDGE (RE),
AND NIR REFLECTANCE VARIABILITY

Red RE NIR

FOI (%) Cab 65.60 93.31 0.41
LAI 19.30 1.07 97.64

TOI (%) Cab 80.48 98.92 2.35
LAI 33.69 6.59 99.66

different VIs, with different scales and dynamic ranges [44]. NE
ΔLAI is calculated as

NEΔLAI =
RMSE {VI versus LAI}

d (VI) /d (LAI)
(4)

where RMSE and d(VI)/d(LAI) are, respectively, the root mean
square error and the first derivative of the best-fit function in
the “VI versus LAI” relationship [2], [45]. The NE ΔLAI was
calculated based on the “VI versus LAI” relationship function.
The LAI was obtained from ground measurements as introduced
in Section II-A, and the VI was calculated with the RapidEye
data according to the formula in Table III.

D. Validation Scheme

Leave-one-out cross-validation procedure was used to evalu-
ate the performance of the improved VIs to estimate LAI. This
type of validation avoids the dependence on a single random
partition into validation datasets. It also guarantees that all sam-
ples were used for both training and validation with each sample
used for validation exactly once. The coefficient of determina-
tion (R2) and RMSE were selected as indicators of the accuracy
of the statistical estimation models [46].

IV. RESULTS AND DISCUSSION

A. Sensitivity of Canopy Reflectance Against LAI and
Chlorophyll Content

Table IV shows the FOI and TOI, calculated by the EFAST
method introduced in Section III-A, for the study of how vari-
ation in Cab and LAI contributes to red, red-edge, and NIR
reflectance variability. Table IV shows that, at the red spectral
region, the sum of Cab and LAI EFAST FOI is about 85% (FOI
of Cab = 65.60%, FOI of LAI = 19.30%). This means that
approximately 85% of the uncertainty in the PROSAIL model
output red region reflectance is explained by the factors sin-
gularly, while the remaining 15% is explained by interactions
between the two factors. Therefore, the EFAST TOI are pro-
vided (see Table IV) to account for the additive effects of each
input factor and their interactions with the others.

The EFAST indices also show that the FOI and TOI of Cab
at the red and red-edge region (FOI at the red/red-edge re-
gion: 65.60%/93.31%, TOI at the red/red-edge region: 80.48%/
98.92%) are vastly larger than the corresponding indices of LAI
at the red and red-edge region (FOI at the red/red-edge region:
19.30%/1.07%, TOI at the red/red-edge region: 33.69%/6.59%),

suggesting that variation in the reflectance measured at the red
and red-edge spectral region is mainly the result of variations
in the chlorophyll content. Compared to the red spectral re-
flectance, the red-edge reflectance is more deeply controlled by
the chlorophyll content, given that the FOI and TOI of Cab
at the red-edge region (FOI: 93.31%, TOI: 98.92%) are larger
than the indices at the red region (FOI: 65.60%, TOI: 80.48%).
In contrast, variation in the NIR spectral reflectance is mainly
the result of variations in LAI, because the EFAST indices of
LAI at the NIR region (FOI: 97.64%, TOI: 99.66%) are vastly
larger than the corresponding indices of Cab (FOI: 0.41%, TOI:
2.35%). The EFAST sensitivity analysis confirms that the red-
edge spectral reflectance is relatively easily affected by chloro-
phyll change than the red spectral reflectance, which means that
the red-edge band will induce larger error for LAI retrieval when
chlorophyll content varies simultaneously.

The PROSAIL simulated spectral reflectance was further an-
alyzed to understand the relationships between the LAI and
the red, red-edge, NIR reflectance (see Fig. 2). Fig. 2(a) shows
that as LAI increases, the NIR reflectance increases, while the
red reflectance decreases at early stage and then reached an
asymptote when the LAI values exceeded three. Thus, both red
reflectance and NDVI approach a saturation level asymptoti-
cally when LAI > 3. The coefficient of determination (R2)
of the relationship between NDVI and LAI in Fig. 2(a) is
0.81 for LAI < 3, but drops to 0.04 for LAI > 3. In addi-
tion, under visual comparison, the red-edge reflectance scatters
most significantly due to chlorophyll content change, which is
further supported by Fig. 2(b), where reflectance in red-edge
appears as a sharp decrease when chlorophyll changes from
10 to 100 μg/cm2. In order to quantify the effect of chloro-
phyll content on spectral indices formed by the combination
of red/NIR or red-edge/NIR spectral bands, ΔRED, ΔRE,
and ΔNIR were defined as (1) through (3) in Section III-A,
to quantify the relative change of each band. Fig. 2(c) demon-
strates that when chlorophyll content varies from 10 to
100 μg/cm2, ΔRE is much greater than ΔRED and ΔNIR,
which means that the relative change in red-edge spectral re-
flectance is larger than that in red and NIR. Therefore, VIs com-
bining red-edge and NIR bands are more sensitive to chlorophyll
change than the indices combining by red and NIR bands. For
example, for simulated samples of LAI = 3 in Fig. 2(a), the
NDVI value is increased by 26.4% when Cab increases from
10 μg/cm2 (NDVI = 0.72) to 100 μg/cm2 (NDVI = 0.91); in
contrast, the NDVIred-edge value is increased by 159.3%
when Cab increases from 10 μg/cm2 (NDVIred-edge = 0.27) to
100 μg/cm2 (NDVIred-edge = 0.70). The Cab variance would
induce larger LAI retrieval error to NDVIred-edge model than
to NDVI model. Therefore, replacing the red/green reflectance
with the red-edge reflectance in NDVI, MSR, and CIgreen [47],
[48] does not necessarily improve the LAI estimation accuracy
when applied to different crops at different growth stages in
which the chlorophyll content and LAI vary together. Given
that the red spectral reflectance saturates when LAI > 3, while
the red-edge region is easy to be affected by chlorophyll change,
we recommend combining them into VIs rather than abandoning
one of the two regions.
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Fig. 2. Red, red-edge, and NIR reflectance response to LAI: (a) when chlorophyll content varies from 10 to 100 μg/cm2; (b) extracted from figure (a), when
chlorophyll content is 10 and 100 μg/cm2; (c) the change of red, red-edge, and bands against NIR spectral band under two different chlorophyll contents [1)–(3)].

Fig. 3. Coefficient of determination of the calibration models for different val-
ues of the parameter a (Table III), based on in-situ measured LAI and RapidEye
derived reflectance. VIred& RE represents NDVIred& RE, MSRred& RE, CIred& RE.

B. Relationship Between VIs and LAI

The analysis of the data in Table IV and Fig. 2 provides a
justification to combine red and red-edge spectrum to formulate
ratio VIs for LAI retrieval when chlorophyll content and
LAI vary simultaneously. The improved indices in Table III
were calculated using the RapidEye derived reflectance,
with the parameter “a” ranges from 0 to 1, at a step of 0.1.
The value of parameter “a” represents the proportion of red
reflectance, and the value of (1 – a) represents the proportion
of red-edge reflectance. The coefficient of determination
(R2) of the calibration models based on improved indices
(NDVIred&RE, MSRred&RE, CIred&RE) and in-situ measured LAI
were calculated (see Fig. 3). The R2 of each improved index
peaked at a = 0.4 (R2 of NDVIred&RE = 0.62, R2 of
MSRred&RE = 0.61, R2 of CIred&RE = 0.59), and the curve
of each index followed the same trend: a small increase from
a = 0 (R2 of NDVIred&RE = 0.55, R2 of MSRred&RE = 0.53,
R2 of CIred&RE = 0.50) to a = 0.4, then a reduction until a
= 1 (R2 of NDVIred&RE = 0.48, R2 of MSRred&RE = 0.29,
R2 of CIred&RE = 0.18). It is also noteworthy that each index

achieved higher R2 when a = 0 compared to a = 1, suggest-
ing that replacing red/green reflectance with red-edge could
enhance the relationship between LAI and VIs (see VIs formula
of Table III), consistent with many research works [34], [41],
[43], [47]. However, combining red and red-edge reflectance
with selected proportion (in our case a = 0.4, the percentage of
red and red-edge reflectance were 40% and 60%, respectively),
further improves the correlation between LAI and VIs. To note
that, the optimal proportion found between the red and red-edge
reflectance in this study to maximize the LAI estimation may
be varied for other types of agricultural systems, in which
case we suggest to recompute the optimal proportion for other
datasets.

The NDVI, NDVIRed-edge, and NDVIred&RE exhibited log-
arithmic relationships with LAI, while MSR, MSRRed-edge,
MSRred&RE, CIgreen, CIRed-edge, and CIred&RE exhibited expo-
nential relationships with LAI (see Fig. 4). The red/green
reflectance based indices have weaker correlations with LAI,
especially when LAI exceeded three. NDVI saturated as LAI
value increased while MSR and CIgreen showed considerable
scatter against LAI. VIRed-edge (VI represents NDVI, MSR, and
CI) with red/green reflectance replaced with red-edge has a
stronger relationship with LAI than the red/green reflectance
based indices; while VIred&RE combining red and red-edge
reflectance had the strongest relationship with LAI, with R2

values increased by at least 10% compared to VIRed-edge. Among
the indices, CIgreen, which consists of NIR and green reflectance,
had the lowest coefficient of determination (R2 = 0.063),
suggesting that VIs including green reflectance are not optimal
for LAI estimation under various chlorophyll content. Although
green-based indices can be highly accurate when applied to
single species plant communities [49].

For the same LAI, all the three red/green reflectance based
indices (NDVI, MSR, and CIgreen) showed lower values for
maize than other crops [see Fig. 4(a), (d), and (g)], all VIRed-edge

[see Fig. 4(b), (e), and (h)] and VIred&RE [Fig. 4(c), (f), and
(i)] showed lower values for alfalfa than other crops. This is
in agreement with the study of Delegido et al. [50], in which
nine types of crops including, maize, alfalfa, and wheat were
investigated based on field measurements in Spain, Germany,
and France. This could be explained by the effect of chlorophyll
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Fig. 4. Relationships between VIs [(a) NDVI, (b) NDVIRed-edge, (c) NDVIred& RE, (d) MSR, (e) MSRRed-edge, (f) MSRred& RE, (g) CIgreen, (h) CIRed-edge,
(i) CIred& RE] and LAI, for maize, barley, wheat, and alfalfa during the growing seasons of 2015.

content. The in situ data we collected for this study does not
include the chlorophyll content, therefore we have to refer the
chlorophyll effects among these crops from other datasets and
research works. According to other field measurements we have
conducted and other research concerning these crops [50], [51],
we can draw the conclusion that when at the same LAI value,
usually the leaf chlorophyll content of maize is higher than that
of wheat and barley, while the leaf chlorophyll content of alfalfa
is lower than that of wheat and barley. As a result, the RapidEye
reflectance in this study appears that the spectral reflectance of
the red-edge is lower for maize than that in wheat and barley,
while higher for alfalfa than that in wheat and barley, which is in
accordance with the rule revealed by the simulated reflectance
shown in Fig. 2; when the LAI value is fixed, the red-edge
reflectance increases as the chlorophyll content decreases. In the
red spectral region, the maize spectral reflectance is higher than
that of other crops. Thus, the VI values for crops with equivalent
LAI values (moderate-to-dense canopies) show that the maize

canopy has lower VI (NDVI, MSR, CIgreen) values but higher
VIRed-edge (NDVIRed-edge, MSRRed-edge, CIRed-edge) than that of the
other crops. In terms of alfalfa, the VIRed-edge values are lower
than other crops with the same LAI.

Crop canopy reflectance is a complex signal affected by many
factors, besides the chlorophyll content, there might be other fac-
tors affecting LAI retrieval such as leaf structures and canopy
architectures of these crops. For example, the canopies of maize
and alfalfa exhibit a planophile leaf angle distribution [49],
[52], while the canopies of barley and wheat exhibit a more
erectophile leaf angle distribution [53]. But these factors have
much less impact than LAI and chlorophyll content on canopy
reflectance as proved by other researchers [24]. According to
our other field measurements and other research works con-
cerning these crops [50], [51], within the RapidEye bands we
investigated [red (630–685 nm), red-edge (690–730 nm), NIR
(760–850 nm)], the red and red-edge regions are dominated by
Cab and LAI where other factors do not need to be accounted
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Fig. 5. Sensitivity of the different VIs tested to LAI using the NEΔLAI (1).

for; the NIR region is impacted by multifactors, such as LAI,
average leaf angle ,and dry matter content, but these factors do
not affect the improvement of the VIs proposed in our study.
Because the NIR band remains unchanged during the improve-
ment of VIs, in which the improvement relies on the combi-
nation of red and red-edge regions. In this study, the newly
improved VIs are focused on reducing the impact of the chloro-
phyll content on LAI retrieval. Nevertheless, we suggest that the
relationships between VIs and LAI will potentially be further
improved if the impact from other factors could be reduced as
well.

The sensitivity analysis of the different spectral VIs to LAI
was performed by calculating the NE ΔLAI of the calibration
models between each VI and LAI, in order to compare the
performance of the nine indices under the same criteria. This
analysis (see Fig. 5) shows that among VIs of the same root (e.g.,
NDVI, NDVIRed-edge, and NDVIred&RE), the NDVI exhibits the
lowest NEΔLAI values (thus the highest sensitivity to LAI).
In particular, the NDVIRed-edge (marked by blue markers) ex-
hibits the highest NEΔLAI values (thus the lowest sensitivity to
LAI), while the NDVIred&RE shows moderate NE ΔLAI values
(thus moderate sensitivity to LAI). MSR and CIgreen, as well
as their corresponding improved indices, show the same rule
as NDVI series indices: original VI (marked by green mark-
ers) was the most sensitive to LAI, second by the VIred&RE,
while the VIRed-edge was the least sensitive to LAI. The spectral
analysis confirms that VIRed-edge is less sensitive to LAI than
VIred&RE. Therefore, the improved VIs VIred&RE (NDVIred&RE,
MSRred&RE, CIred&RE) have greater potential in LAI retrieval
than the corresponding VIRed-edge (NDVIRed-edge, MSRRed-edge,
CIRed-edge).

C. LAI Estimation Model Validation

Results of leave-one-out cross validation for LAI estimation
are presented in Fig. 6, with coefficient of determination (R2)
and RMSE computed and presented for each model. The es-
timated LAI values were compared with the ground measure-
ments using least significant difference test performed using
SPSS software [54]. Statistical analysis revealed that the esti-
mates of CIgreen model reached 0.05 level of significance, and
estimates of other eight models reached 0.01 level of signifi-
cance. Among the examined indices, the red/green reflectance
based (VIs were the poorest at predicting LAI [see Fig. 6(a),
(d), and (g)], the VIRed-edge improved the LAI prediction [see
Fig. 6(b), (e), and (h)] on the basis of VIs, by including red-
edge reflectance. This is agreed with other studies [19], [25]
in which the red-edge modified indices improved the LAI es-
timation when the indices are applied to crops with consistent
chlorophyll content, e.g., datasets consisting of one type of crop
at one growth stage. However, the chlorophyll content varies
across the crop growing season and varies among different crop
types in our study, VIred&RE resulted in the best prediction with
the lowest RMSE (less than 1.07) and the highest R2 (above
0.500) [see Fig. 6(c), (f), and (I)], by combining the red spec-
tral reflectance and the red-edge spectral reflectance into the
VIs. In comparison with the VIRed-edge, the VIred&RE improved
the LAI estimation accuracy by at least 10% higher R2 and
10% lower RMSE value. For instance, NDVIred&RE exhibited
an R2 of 0.500 and RMSE of 1.068; NDVIRed-edge exhibited an
R2 of 0.438 and RMSE of 1.138, showing lower accuracy than
NDVIred&RE; and NDVI exhibited an R2 of 0.314 and RMSE of
1.255, showing the lowest accuracy among NDVI, NDVIRed-edge,
and NDVIred&RE.
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Fig. 6. Measured LAI versus estimated LAI derived from RapidEye spectra. (a) NDVI, (b) NDVIRed-edge, (c) NDVIred& RE, (d) MSR, (e) MSRRed-edge,
(f) MSRred& RE, (g) CIgreen, (h) CIRed-edge, and (i) CIred& RE.

The red/green reflectance based indices (VIs) exhibited re-
spective drawbacks; for instance, the NDVI saturated when LAI
exceeds three, MSR scattered when LAI exceeds three, and the
CIgreen overestimated LAI at low-to-moderate (LAI < 3) canopy
cover whilst significantly underestimated LAI when LAI > 3.
The saturation of NDVI at LAI values higher than three was
expected and is in agreement with the literature [16]. The
red-edge-based indices VIRed-edge improved the estimation by
alleviating the underestimation of moderate-to-dense canopy,
but did not improved much overestimation for low-to-moderate
canopy, agreeing with the results in other research works us-
ing the red-edge-based indices [48], [50]. By accounting for
the chlorophyll content effect, the improved VIs we formed
in this paper best yielded LAI with highest accuracy and

robustness when applied to a wide range of crops across multi-
growth stages.

In addition, the effects of chlorophyll content difference
among the four crop species on canopy spectra and VIs, dis-
cussed in Section IV-B, result in the different behaviour in LAI
estimation. The maize and alfalfa LAI are better estimated by
VIRed-edge [see Fig. 6(b), (e), and (h)] than by the VI [Fig. 6(b),
(e), and (h)], because the red-edge reflectance is significantly
affected by the chlorophyll content: the red-edge reflectance of
maize is lower than that of wheat and barley, while the red-edge
reflectance of alfalfa is higher than that of wheat and barley.
Hence replacing the red band with red-edge in VIs loose the
robustness of VIs against chlorophyll change. Fig. 6(c), (f), and
(i) demonstrates that VIred&RE better retrieved maize and alfalfa
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LAI than VIRed-edge, and VIred&RE improved the underestimation
and overestimation problems of VIs, confirming that combin-
ing red and red-edge reflectance in VIred&RE could improve the
underestimation and overestimation problems, whilst remain
a certain capability of robustness against chlorophyll change.
Our results agreed with many researchers who revealed that
some indices using red-edge bands in their formulation, how-
ever, proved to be less sensitive to differences among species
[43], [49]. As the performance of empirical methods are case
dependent, we suggest using our improved indices (VIred&RE)
for the case of various chlorophyll content, e.g., various crop
species and various growth stages. For complicated cases, a
threshold method to choose among our improved indices, red-
edge indices (VIRed-edge) and original indices (VI) may yield
higher LAI estimation accuracy. For example, on the choice
between NDVI and red-edge NDVI, Nguy-Robertson et al. se-
lected NDVI = 0.7 as a threshold for their case of maize and
soybean LAI estimation (NDVI saturates at 0.7) [55].

V. CONCLUSION

In this paper, we have proposed three improved VIs
(NDVIred&RE, MSRred&RE, and CIred&RE) combining the red and
red-edge spectral region and validated them with the RapidEye
satellite data and in-situ data over four crops at four growth
stages. The predictive power of the three improved VIs and
other six existing indices have been analyzed, including three
red/green reflectance based indices (NDVI, MSR, and CIgreen),
three red-edge modified indices (NDVIRed-edge, MSRRed-edge, and
CIRed-edge), and three improved indices combining red and red-
edge regions (NDVIred&RE, MSRred&RE, and CIred&RE). The pro-
portion between the red and red-edge reflectance that led to the
best correlation between VIred&RE (NDVIRed-edge, MSRRed-edge,
and CIRed-edge) and LAI was encountered at 0.4, which means
using 0.4∗ρred + 0.6∗ρRE to replace ρred in the formula of
red/green reflectance based indices (NDVI, MSR, and CIgreen).
Under the comparison amongst the red/green reflectance based
indices, the VIRed-edge and the VIred&RE, the VIred&RE achieved
the most accurate LAI estimation, improving at least 10% the co-
efficient of determination achieved by VIRed-edge. The improved
indices VIred&RE, combining the red and red-edge reflectance,
both of the spectral regions are strongly related to the physi-
ological status of the plant, proved to be the most robust and
stable for crop LAI estimation over a wide range of crop species
and growth stages.

Such indices are of great potential for agricultural monitoring
using sensors providing red-edge bands and high spatial reso-
lution, such as RapidEye and the newly launched Sentinel-2.
In view of delivering improved LAI products for environmental
and agricultural applications, further research is planned in the
directions of:

1) validation of the proposed VIs over a broader range
of crops with field collected both LAI and chlorophyll
content;

2) application and evaluation of more advanced plant param-
eter retrieval models.
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